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INTRODUCTION 
GEOMETRICAL THINKING 

 
Kuzniak Alain 

Laboratoire André Revuz, University Paris-Diderot France 
Elia Iliada 

University of Cyprus 
Hattermann Matthias 

University of Giessen, Germany, 
Filip Roubicek 

Institute of Mathematics, Academy of Sciences of the Czech Republic 
 

The Working Group 5 on Geometrical Thinking had around 30 participants from 14 
countries all over Europe and from America too (Mexico, USA and Canada). During 
its sessions, the participants discussed 16 papers prepared for the Working Group and 
selected among 23 initial proposals and 15 have been retained for publication. The 
participants, and it's a strength of the group, worked within the continuity of the 
former sessions of Cerme. Some points can be considered as a common background 
known by ancient participants to the Working Group and the discussions among 
people were facilitated by this common culture. The readers are invited to have a look 
on the former general reports made at Bellaria (Dorier et al., 2003) and Larnaca 
(Kuzniak and al, 2007) when they want to know more about the common 
background.  
This report insists on the questions of theoretical supports in Geometry, which can be 
seen as local theory in comparison of more general theoretical frameworks used in 
Mathematics Education. It would be interesting to explore the relationships between 
both local and global viewpoints. This part results from a collective work of a small 
group managed by Iliada Elia.  
Then, all the accepted papers are briefly introduced for giving an idea of problems the 
group was concerned by.  
 
Theoretical and methodological aspects of research in geometry 
 
During the working group, we distinguished two approaches of using theory in 
research: First, theory can serve as a starting point for initiating a research study. For 
instance, the need to empirically validate or extend specific theories may motivate an 
investigation. Second, theory can act as a lens to look into the data. For example, 
different phenomena and behaviours observed in mathematics classes may evoke 
ideas to the teacher or the researcher for starting research. To start from phenomena 
or data is a valid first approach to research. In this case, theory may enable the 
teacher or the researcher to better understand and interpret the collected data.  
Certainly, if one has a dual approach to research (data or theory) s/he can start with 
theory or data. This has methodological implications, that is, the methodology has to 
be appropriate to a chosen theory or to the collected data. The collection of data is 
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very important, though, for both types of research. But to have substantial and long-
standing effects to the research community’s endeavour, the data, their use and 
interpretation should have a theoretical contribution (e.g. add or suggest 
modifications to an existing theory or develop new theory).  
The most important theories in geometry education that were identified and discussed 
are the following: Van Hiele’s levels, Geometrical Working Space and Geometrical 
paradigms and Duval’s semiotic approach. Each line of theory approaches geometry 
learning from a different perspective and thus is helpful for different purposes. Van 
Hiele’s theory is mainly helpful for evaluating students’ reactions, productions and 
solutions to problems (phenomenological approach). Houdement and Kuzniak’s 
(2003) theory about Geometrical Working Space and Geometrical Paradigms (e.g. 
Geometry I: Natural Geometry, Geometry II: Natural Axiomatic Geometry and 
Geometry III: Formal Axiomatic Geometry) is mainly helpful for classifying 
approaches, e.g. the types of argumentation used and to understand students’ 
difficulties and errors (epistemological approach). Duval’s (2005) theory is mainly 
helpful for examining the registers (e.g. geometrical figures, verbal representations-
language) used in the field of geometry and their treatment in geometry tasks 
(semiotic approach).   
Furthermore, there are psychological approaches to geometry that are often linked to 
spatial abilities, e.g. Gestalt and Piaget’s theories, but are not very well taken into 
account in the mathematics education research community. Connecting these 
approaches with geometry theories and/or using them as a tool to look into the data in 
future studies could be a first step towards addressing this gap.   
Future research on geometry theories and their articulation could use Geometrical 
Paradigms in a more operationalized manner to analyze existing curricula, to analyze 
students’ behaviour and in investigating modelling and problem solving. Van Hiele’s 
levels could be extended by proposing and empirically validating new (sub-)levels 
within their scale.  
 
Educational goals and curriculum in geometry 
 
The discussion on this general and fundamental topic was introduced by two papers. 
Using an epistemological approach, Boris Girnat criticized some present approaches 
in the learning of Geometry (especially in Germany) which leave aside the classical 
ontological aspect of Geometry. . He claims that there are two different types of 
applications in geometry and that they both are necessary and not exchangeable by 
each other: The first one contains simple applications which are paradigmatic 
examples to learn basic geometrical concepts; the second one includes more complex 
ones and refers to transcendental aspects.   
 
Then Laurent Vivier and Alain Kuzniak described a French viewpoint on the Greek 
Geometrical Work at Secondary level. Beyond some similarities between France and 
Greece, it appears that the Euclidean tradition stays stronger in Greece but only for 
cultural reasons. Due to the lack of evaluation at the entrance on the university, the 
teaching of geometry is not viewed as important by the students and we can notice 
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again the effects of evaluation on the real curriculum. In their study, the authors used 
a theoretical frame based on paradigms and geometrical working spaces and Greek 
people present in the group reacted and agreed with the conclusions. The presentation 
made at Cerme was thought as an important part of the research project. 
 
Understanding and use of geometrical figures and diagrams  
 
The study presented by Eleni Deliyianni investigated the role of various aspects of 
apprehension, i.e., perceptual, operative and discursive apprehension, in geometrical 
figure understanding. Based on a statistical exploration of data collected from 1086 
primary and secondary school students, the existence of six main factors revealing the 
differential effect of perceptual and recognition abilities, the ways of figure 
modification and measurement concepts. However, findings revealed differences 
between primary and secondary school students’ performance and in the way they 
behaved during the solution of the tasks. 
 
In her presentation Claudia Acuna used the old but always pertinent viewpoint on the 
treatment of geometric diagrams as Gestalt configurations. In geometry, the figural 
aspects of diagrams as symbols are used to solve problems. When figural information 
are treated, Gestalt configurations emerge: auxiliary figural configurations, real or 
virtual, that give meaning and substance to an idea that facilitates the proof or 
solution to the problem. In the paper, some arguments are given to acknowledge the 
existence of these resources. 
 
Understanding and use of concepts and “proof” in geometry.  
 
The work presented by Paola Vighi is concerned by the comparison of surfaces which 
need some mereological transformations in the sense of Duval. The same problems 
were given to two groups of pupils 10-11 years old having followed different ways of 
learning geometry: one traditional and the second more “experimental”. She 
concludes with some observations about teaching geometry and suggestions for its 
improvement. 
Caroline Bulf studied some symmetry’s effects on conceptualization of new 
mathematical concept at two different levels at French secondary school, with 
students who are 12-13 years old and 14-15 y.o. From the study, the concept of 
symmetry makes students confused with the transformations of the plan introduced at 
the beginning of secondary school. Students seem to be more familiar with metrical 
properties relative to the symmetry and develop mathematical reasoning at the end of 
secondary school.  
Mattheou Kallia investigated the basic geometrical knowledge of students of the 
Pedagogical Department of Education. She investigated mainly how they define 
similarity of shapes and how the intuitive knowledge affects their perception of 
similar shapes. The results showed that a large percentage of students are not in a 
position to correctly define the similarity of shapes and that initial intuition affects 
their responses and their mathematical achievement. 
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Two other papers were focused on the question of geometrical reasoning. Georgia 
Panoura and Athanasios Gagatsis underlined that the geometrical reasoning of 
primary and secondary school students can be compared mainly on the way students 
confronted and solved specific geometrical tasks: the strategies they used and the 
common errors appearing in their solutions. This comparison shed light to students’ 
difficulties and phenomena related to the transition from Natural Geometry (the 
objects of this paradigm of geometry are material objects) to Natural Axiomatic 
Geometry (definitions and axioms are necessary to create the objects in this paradigm 
of geometry). They stressed the inconsistency of the didactical contract implied in 
primary and secondary school education and they conclude on the need for helping 
students progressively move from the geometry of observation to the geometry of 
deduction. 
Based on a different framework, Taro Fujita seems to study the same problem in the 
case of geometry in Japan. This paper reports findings that indicate that as many as 
80% of lower secondary age students can continue to consider that experimental 
verifications are enough to demonstrate that geometrical statements are true - even 
while, at the same time, understanding that proof is required to demonstrate that 
geometrical statements are true. Further data show that attending more closely to the 
matter of the ‘Generality of proof’ can disturb students’ beliefs about experimental 
verification and make deductive proof meaningful for them. It could be interesting to 
interpret these results with the same tools as Panoura and Gagatsis: didactical 
contract and geometrical paradigms. It seems that the conclusions are very close but 
in different context. 
 
Communication and assessment in geometry 
 
In the two following papers, original tools were used to assess geometrical abilities 
and in the same time to help students in developing their skills in argumentation. 
Silvia Semana examined how the written report, within the context of assessment for 
learning, helps students in learning geometry and in developing their explanation and 
argumentation skills at the 8th grade in Portugal. This study suggests that using 
written reports improves those capabilities and, therefore, the comprehension of 
geometric concepts and processes. These benefits for learning are enhanced through 
the implementation of some assessment strategies, namely oral and written feedback.  
 
Anat Levav developed an approach based on the presumption that solving 
mathematical problems in different ways may serve as a double role tool - didactical 
and diagnostic. She described a tool for the evaluation of the performance on multiple 
solution tasks (MST) in geometry. The tool is designed to enable the evaluation of 
subject's geometry knowledge and creativity as reflected from his solutions for a 
problem. The example provided for such evaluation is taken from an ongoing large-
scale research aimed to examine the effectiveness of MSTs as a didactical tool. Anat 
Levav argued that this method could be extended to other domains in mathematics. 
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3D Geometry: Teaching, thinking and learning 
 
The working group was concerned by some studies on 3D Geometry with new 
viewpoints due to the use of dynamical software in the learning of these specific parts 
of geometry which is often left aside in the real curriculum. Dynamic Geometry 
Environments (DGEs) in 2D are one of the well researched topics in mathematics 
education. DGEs for 3D-environments (Archimedes, Geo3D and Cabri 3D) were 
designed in Germany and France. Mathias Hattermann studied the specific drag-
mode in 3D Geometry environments. He showed that pre-service teachers with 
previous knowledge in 2D-systems prefer to work with a real model of a cube instead 
of the 3D-system to solve certain problems. Previous knowledge in 2D-systems 
seems to be insufficient to handle the drag-mode in an appropriate way in 3D-
environments. In a second study, he introduced the students to the special software 
before the investigation and distinguished different dragging modalities during the 
solution processes of two tasks.  
The approach of Joris Mithalal is more on the transition to formal proof in 3D 
Geometry. Teaching mathematical proof is a great issue of mathematics education, 
and geometry is a traditional context for it. Nevertheless, especially in plane 
geometry, the students often focus on the drawings. As they can see results, they 
don’t need to use neither axiomatic geometry nor formal proof. He tried to analyse 
how space geometry situations could incite students to use axiomatic geometry. 
Using Duval’s distinctions between iconic and non-iconic visualization, he discussed 
the potentialities of situations based on a 3D dynamic geometry software. 
 
In the two last papers, the authors focused on the traditional way of teaching and 
learning 3D Geometry. Edna Gonzalez presented part of the analysis of a Teaching 
Model for the geometry of solids of an initial Education Plan for elementary school 
teachers, and its implementation in the University School of Teaching of the 
Universitat de València in Spain.  
In a statistical analysis of the results of 269 students (5th to 9th grade) in Cyprus, 
Marios Pittalis tried to show that 3D geometry thinking can be described across the 
following factors: (a) recognition and construction of nets, (b) representation of 3D 
objects, (c) structuring of 3D arrays of cubes, (d) recognition of 3D shapes’ 
properties, (e) calculation of the volume and the area of solids, and (f) comparison of 
the properties of 3D shapes. With these factors, he identified four different profiles of 
students. In the future, it would be useful to make these kinds of studies in various 
contexts with other theoretical frameworks to validate the conclusions.  
 
References 
Duval, R. (2005). Les conditions cognitives de l’apprentissage de la géométrie : 
Développement de la visualization, différenciation des raisonnements et coordination 
de leurs fontionnements. Annales de Didactique et de Sciences Cognitives, 10, 5-53.  
Houdement C., & Kuzniak, A. (2003). Elementary geometry split into different 
geometrical paradigms. Proceedings of CERME 3. Bellaria, Italy. 
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THE NECESSITY OF TWO DIFFERENT TYPES OF APPLICA-
TIONS IN ELEMENTARY GEOMETRY

Boris Girnat

University of Münster, Germany

This article connects the results of an ontological investigation on elementary geo-
metry to normative questions on educational goals of  modelling.  The main thesis  
consists in the assumption that there are two different types of applications in geo-
metry and that they both are necessary and not exchangeable by each other: The first  
one contains simple applications which are paradigmatic examples to learn basic 
geometrical concepts; the second one includes more complex ones. It is claimed that  
a normative discussion on education goals of modelling is only possible as far as the  
second type is concerned. As a result, the debate on modelling differs in the scope of  
geometry significantly from similar considerations relative to other parts of mathem-
atics, and that by an ontological and not normative reason.

A CASE STUDY TO RETHINK THE ROLE OF APPLICATIONS

This article is a result of a qualitative study concerning teachers’ beliefs (Calderhead 
1996) about teaching geometry at German higher level secondary schools (the so-
called Gymnasien) including goals, contents, methods and connections to the teach-
ers’ broader understanding of mathematics as a whole system. The theoretical frame-
work follows the psychological construct of subjective theories which are defined as 
systems of cognitions containing a rationale which is, at least, implicit (Groeben et al. 
1988). The method depends on case studies. Data are collected by semi-structured in-
terviews and interpreted according to the principles of classical hermeneutics. The 
construct of subjective theories and its adaption to the didactics of mathematics are 
briefly summed up by Eichler (2006).

In the following, a small part of this study will be presented. We will describe the dif-
ficulty of making sense of a teacher’s utterances concerning geometrical applications. 
This difficulty was the initial point to rethink the role of applications in elementary 
geometry in general. Such a way of rethinking is one of the typical goals intended by 
the construct of subjective theories: This approach proposes, amongst others, to es-
tablish an exchange between individual opinions of “practising semi-specialists” and 
the theories of the scientific community.

A TEACHER’S OPINION ON APPLICATIONS IN GEOMETRY

The teacher of the case study presented here – let us call him Mr. B – has been taught 
mathematics,  physical  education,  and  computer  science  at  a  German  secondary 
school for approximately 25 years. The age of his pupils ranges from 10 to 19 years. 
He seems to be well grounded in mathematics education and equipped with an elab-
orated concept of school-compatible mathematical applications. As a part of his posi-
tion, he is involved in the education of trainee teachers in mathematics. This may be a 
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further indication for the assumption that he is familiar with recent theories and per-
spectives of didactics.

As far as applied mathematics is concerned, his criteria for “good” applications match 
a lot of the attributes which are discussed and accepted by professional didacts (cf. 
Jablonka 1999). He demands that “the result [of a model building process] has to be 
useful for practical acting and reasoning” and that the real-world problems have to be 
“authentic and realistic, and not artificial and constructed” fulfilling their educational 
functions by being “challenging, but solvable – possibly after and due to simplifica-
tion” (all quotations are translated by the author). He mentions the concepts of mod-
elling and model building processes explicitly and approves the new style of arguing 
which is  introduced to  mathematics  education by mathematization.  He concludes: 
“Modelling and mathematical applications – these are things for which I would never 
abandon just a minute to discuss an automorphism instead.”

AMIDST A STRUGGLE OF TENDENCIES?

At first sight, Mr. B seems to be a true advocate of model building processes and 
mathematization. But later, when asked how significant applications are for his every-
day lessons taught in geometry, he admits that it is “not easy to find good geometrical 
applications.” He refers to some examples taken from computer-aided design, naviga-
tion and traffic routing, but – as the main surprise – he does not expect that these ap-
plications are the ones his students should keep in mind. They should rather gain “an 
understanding of spatial relations” and forms and symmetries and they ought to deal 
with “rather simple applications” like drawing and folding figures or “reading a city 
map”; and finally, he does not ask which abilities can be conveyed by modelling and 
mathematization, but, instead, in which cases modelling is “more necessary for the 
students” – and one can add: to understand geometry.

At this point, there appears to be a rupture, possibly an inconsistency in Mr. B’s per-
spectives concerning geometrical applications. On the one hand, he stresses the abilit-
ies and capacities in modelling and problem solving, which could be enforced by us-
ing authentic and challenging real-world problems; on the other  hand,  he regards 
“simple” geometrical applications as a tool to understand the concepts and theorems 
of elementary geometry – highlighting the knowledge of geometrical objects, of their 
attributes and dependencies as an educational goal on its own, and not as a device to 
manage practical challenges and to build up general skills beyond the scope of math-
ematics. The parts of goals and means seem to be suddenly switched over.

At first sight, there might be a simple and obvious explanation for Mr. B’s ambivalent 
statements: He could be influenced by two different schools which Kaiser claims to 
have located within the discussion on mathematical applications (Kaiser 1995). She 
distinguishes between a pragmatic and a scientific-humanistic approach: In the prag-
matic  view,  mathematics  is  a  tool  to  solve  practical  problems.  Applications  are 
deemed as practices to achieve problem solving capacities in managing real-world is-
sues (Kaiser 1995, p. 72). Therefore, applied mathematics is seen from a procedural 
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point of view and modelling and model building processes are stressed as a content of 
the curriculum. The scientific-humanistic school,  in contrast,  emphasizes the prin-
ciple of “conceptual mathematization”, that means that real-world situations are used 
to discover and develop mathematical concepts and insights and to receive mathemat-
ical ideas based on manifold associations (Kaiser 1995, p. 72).

GEOMETRICAL WORKING SPACES

To clarify the ideas of the scientific-humanistic school as far as geometry is con-
cerned, it is suitable to use the theoretical framework of geometrical working spaces 
(summed up by Houdement 2007). By this approach, geometry is split into three dif-
ferent paradigms (Houdement & Kuzniak 2003):

1) Geometry I (Natural Geometry): Geometry is seen as an empirical science which 
refers to physical objects. To proof or to refute conjectures, both deduction and ex-
periments are  allowed,  whereas  measurement  is  the main  experimental  technique. 
This theory is not axiomatic, and its type of deduction is similar to inferential argu-
ments between “local ordered” propositions in ordinary language discussions.

2) Geometry II (Natural Axiomatic Geometry): Geometry is treated as an axiomatic 
theory. The axioms are supposed to refer to the real world and, therefore, to describe 
physical figure and objects (with some idealization). Insofar, Geometry II is empiric-
al, too. But to proof or to reject propositions, no empirical argument is permitted, but 
only a deductive one based on the axioms.

3) Geometry III (Formalist Axiomatic Geometry): Geometry is seen as an axiomatic 
and deductive theory, and no connection to the real world is intended.

With reference to this approach, the main goal of the scientific-humanistic school can 
be described as the project to prevent a sudden transition from Geometry I in primary 
school to Geometry III in the higher level secondary school in Germany. Such a sud-
den transition was enforced by the scientific tradition of this type of school and even 
increased by the New Maths movement until the early 1980s (Schupp 1994).

The alternative drift of the scientific-humanistic school was to fortify Geometry II, to 
establish a tender segue from Geometry I to II, and finally to achieve Geometry III or, 
at least, an idealistic interpretation of Geometry II which replaces the reference to 
physical objects by the platonic idea of  idealistic objects not being present in the 
physical world. This project was mainly motivated by two reasons (cf. Kaiser 1995, 
p. 73): On the one hand, the ontological binding to real-world objects should be an 
intermediate stage on the way to an idealistic or formalist view of geometry to pre-
vent a not understood formalism. On the other hand, it should establish an under-
standing of the role geometry plays as a tool in natural sciences. In both cases, the on-
tological foundation in real-world objects was primarily not intended to enforce mod-
el building processes and skills, but to build up a “field of associations” in order to 
understand geometry or natural science more proficiently.
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NORMATIVE ISSUES OF APPLIED MATHEMATICS

Concerning applied mathematics, the pragmatic and scientific-humanistic approach 
differ in weighting normative parameters: One of them sets priorities in practical rel-
evance und abilities to deal with model building processes; the other one stresses the 
theoretical aspects of mathematics (and natural sciences) and uses the associations to 
real-world situations  as  a  tool  to  achieve a  deep and connected understanding of 
mathematical concepts. The origin of this controversy appears to be nothing else but a 
disagreement about educational goals; and the different role of applications does not 
seem to arise from a specific character of geometry or geometrical applications, but 
only from disparate normative points of view – a situation which seems to have the 
same consequences in every part of mathematics and mathematics education, and not 
only in matters of geometry.

Exactly this opinion is called into question by our following considerations. We will 
propose an alternative assumption to explain the main statements of Mr. B. Our ex-
planation is based on two arguments: Firstly, we will discuss an investigation on the 
ontology of geometry to clarify the question whether geometrical applications can be 
treated in the same way as other ones. Secondly, we will concern transcendental argu-
ments to elaborate the issue to what extend the use and choice of geometrical applica-
tions are within the scope of normative deliberations.

THE STRUCTURAL THEORY OF EMPIRICAL SCIENCES

Our ontological consideration is influenced by a particular kind of philosophy of sci-
ence which is called the “structuralist theory of empirical sciences”, primarily estab-
lished by Sneed and later elaborated by Stegmüller and others (Sneed 1979 and Steg-
müller 1973/1985). The core assumption of this approach is the idea that empirical 
theories can be described by two components, namely by a set-theoretical predicate 
and a set of intended applications (Stegmüller 1973/1985, pp. 27–42). The set-theor-
etical predicate contains all of the formal and axiomatic aspects and is defined by the 
same method used by mathematicians in succession of Bourbaki: In the same manner, 
how it is possible to define the concept of a group as a pair (G,*) so that every ele-
ment of G fulfils certain axioms relative to *, the axiomatic background of classical 
mechanics can be expressed by a quintuplet so that every element of the carrier set 
fulfils the well-known Newtonian axioms (Stegmüller 1973/1985, pp. 106–119).

At this stage, there is no difference between an empirical and a non-empirical theory 
(for example a mathematical theory from a formalistic point of view): They both can 
be defined by set-theoretical predicates. The difference arises from the set of intended 
applications: In case of non-empirical theories, this set is empty. In case of an empir-
ical theory, it contains the applications which are claimed to be describable and ex-
plainable by the concerned theory. For instance, some of the intended applications of 
classical mechanics are pendulums, solar systems and especially apples falling from a 
tree. The set of intended applications cannot defined extensionally, but only by enu-
merating paradigmatic examples and by declaring that every entity also belongs to 
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this set which is “sufficiently similar” to the paradigmatic examples – leaving vague 
what “sufficiently similar” means (Stegmüller 1973/1985, pp. 207–215).

The concept of geometrical working spaces is a useful framework to establish a con-
nection between geometry and the structuralist theory of science: Geometry I and II 
are empirical theories insofar they are intended to refer to real-world objects, and they 
even share the same set of intended applications: physical objects of middle dimen-
sion, especially drawing figures and tinkered matters which are used at school. But 
despite sharing the same set of intended applications, these theories fundamentally 
differ in their set-theoretical predicates: Whereas Geometry II is assumed to fulfil an 
axiomatic system of Euclidean Geometry, the propositions of Geometry I may be so 
vague and psychologically motivated and so variable relative to different times and 
persons that they certainly cannot be transferred to a system of axioms and accord-
ingly to a defining set-theoretical predicate. In contrast, Geometry III is not an empir-
ical theory, since it is regarded in a formalist manner, presupposing not to have any 
applications; that means, in this case the set of intended application is empty. But on 
the other hand, Geometry III shares the same defining set-theoretical predicate with 
Geometry II: They both are intended to be a Euclidean Geometry.

The set of intended applications is not just an “illustration”, a nice, but useless thing 
which can be left out; it rather fulfils two indispensable functions: From a logical 
point of view, the set of intended applications is a conceptual attribute and a part of 
the definition of an empirical theory. It distinguishes an empirical theory from a non-
empirical one und declares the “part of the world” to which the theory is connected. 
Exactly this is the difference between Geometry II and III.

The second function results from the fact that every non-trivial empirical theory is 
based on idealization. For example, classical mechanics presupposes the existence of 
point particles without any spatial dimension. However, such entities do not exist in a 
strict sense of the word, but only “approximately” – and this is the second task of the 
set of intended applications: Since there is no way to explain explicitly under which 
condition and to what extent an approximation is allowed to make an empirical the-
ory applicable (Stegmüller 1973/1985, pp. 207–215), i. e. under which condition an 
application belongs to the set of intended application, the paradigmatic examples of 
this set provides a number of “case studies” by which the limits of approximation are 
implicitly defined and novices of the scientific community can become familiar with 
the scope and borders of their coming occupation.

In geometry, the problem of approximation will typically arise, if infinity or dimen-
sion zero occurs; straight lines, planes, and angles are paradigmatic examples of this 
case (Struve 1990, p. 43). For instance, if there is a line drawn on a paper, there will 
be two ways to deal with the question “Is this a straight line, a segment of a straight 
line or neither of them?”: From a formalist or idealistic view of geometry, this is a 
trivial question, since geometry does not refer to physical objects; a physical line is 
neither a segment nor straight line; at most, drawings could be symbolic tools to think 
about geometrical objects or propositions. But if it is taken serious that geometry can 
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be interpreted as an empirical theory (as supposed in Geometry I and II and as being 
common and necessary for geometrical applications as we will see later), the pupils 
will have to learn to treat a line sometimes as a segment and sometimes as a straight 
line. To deal with these decisions is a notorious problem in geometry. The intended 
applications like drawing figures are the paradigmatic examples by which pupils are 
supposed to learn to manage these questions.

Hence,  the knowledge of  the set  of  indented applications and the handling of  its 
vagueness is not optional, but an integral part of a particular empirical theory and, 
therefore, one of the aspects of “possessing” and being able to apply a certain theory. 
The educational task of paradigmatic examples is primarily described by Kuhn as far 
as philosophy of science is concerned (Kuhn 1962/1976, pp. 59–62). It is also a com-
mon thesis in psychology that paradigmatic examples play a major role in learning a 
theory (e. g. Seiler 2001, pp. 144–225).

ONTOLOGICAL ASPECTS OF ELEMENTARY GEOMETRY AT SCHOOL

At this point, we will come back to didactics. Struve has investigated how elementary 
geometry is presented in secondary school following the philosophy of science struc-
turalism sketched above (Struve 1990, p. 6). Expressed in terms of the theory of geo-
metrical  working  spaces,  he  comes  to  the  conclusion  that  the  didactical  changes 
which were established to avoid a sudden switch from Geometry I to Geometry III by 
stressing Geometry II (as mentioned above) factually took the effect that the new 
textbooks present rather Geometry I than Geometry II and (even if Geometry II is 
reached) geometry is continuously taught as an empirical theory, and never as a form-
alistic or idealistic one as intended: “students learn an empirical theory in the geo-
metry lessons held at secondary school” and “concerning the empirical theory, as we 
want to call the theory the students learn in their geometry lessons according to our 
investigation, figures created by folding and drawing are the paradigmatic examples” 
(Struve 1990, pp. 38–39).

THE ISSUE OF MODELLING

Struve has mentioned some of the consequences of his result – foremost some consid-
eration on the fact that proofs have different functions in empirical and non-empirical 
theories observing that students typically treat proofs in the same manner as they are 
used in empirical sciences (Struve 1990, pp. 38–49). In this article, we will add a con-
sideration concerning modelling. If we can follow Struve’s results, Mr. B’s distinction 
between two types of geometrical applications is not confusing, but an obvious im-
plication of the empirical character of geometry as it is taught in secondary school: 
The figures created by drawing and folding and the “simple” applications based on 
these figures can be regarded as the paradigmatic examples which define the set of in-
tended applications and constitute geometry as the empirical science of the spatial en-
vironment surrounding us in everyday life.
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In this view, the supremacy of simple applications is not based on a normative de-
cision about the role of application in mathematics education, but on the specific on-
tology of geometry: The knowledge of and the familiarity to these examples of applic-
ations are defining attributes of geometry as an empirical science. Hence, with regard 
to these “basic” applications, geometry differs from the other parts of mathematics 
taught at school. In the other cases, the amount and choice of applications is a norm-
ative question guided by arguments which Kaiser has combed through. In geometry, 
however, the task of normative deliberations begins not before the set of intended ap-
plications is left. Therefore, it is not astonishing that the (rare) cases which Mr. B 
mentions as “real” examples of modelling in geometry are quite different from the 
paradigmatic examples of folding and drawing: computer-aided design,  navigation 
and traffic routing. In these cases and after some basic courses based on “simple” ap-
plications, geometry may no longer differ in modelling and mathematization.

TRANSCENDENTAL ASPECTS OF GEOMETRY

Our last task concerns the question if the dominance of an empirical view of geo-
metry at school (as Geometry I or II) is an aberration caused by psychological cir-
cumstances and enforced by “misguided” textbooks or if there are good reasons to 
teach geometry as an empirical theory (to some extend). We will argue for the latter, 
accentuating a special role of geometry in contrast to other parts of mathematics and 
aiming  for  the  conclusion  that  therefore  two  different  types  of  applications  are 
needed.

Let us start with an example: In 2003, a new national curriculum framework called 
“Bildungsstandards” (educational standards) was established in Germany. In contrast 
to former resolutions, this declaration stresses general skills, abilities and competen-
cies – and among others, abilities in mathematical modelling. The relevant paragraph 
closes with the following sentence: “This includes translating the situation which is to 
be modelled into mathematical concepts, structures and relations” (KMK 2004, p. 8). 
This  is  a  formulation  ranging  over  all  parts  of  mathematics  taught  at  secondary 
school. A specific statement focussing on geometry is not declared.

Let  us  deliberate  what  this  sentence  presupposes:  There  is  a  real-world  situation 
which can be described by mathematical concepts, but need not to be treated in this 
way. For instance, you can cross the road without thinking about the probability to be 
knocked over and you can look at the carps in a lake without having a function in 
mind to describe their growth process. Normally, a mathematical description is  not 
necessary and will only be introduced, if it promises deeper insights as a description 
in ordinary language. Besides the general skills, this is a typical educational goal of 
modelling: the awareness that mathematics is a useful tool to achieve knowledge of 
the external world and to formulate this knowledge in a very precise manner.

In geometry, the case is quite different. If geometry could be treated like other math-
ematical theories, it would be possible to describe a situation geometrically only on 
demand. But this assumption fails since it is inevitable to use, at least, rudimental 

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 682



geometrical concepts to describe a situation at all. You cannot cross the road or look 
at the carps in the lake without possessing, at least, a broad understanding of basic 
geometrical concepts. For instance, a (vague) understanding of relative positions is 
necessary to individuate the different things, persons or objects which are part of a 
specific situation.

The idea that space is not a thing of human perception among others, but the concep-
tual framework which allows to describe real-world phenomena was primarily intro-
duced by Kant as a part of his transcendental philosophy (Kant 1781/1998). In con-
temporary ontology the conceptual framework of space (and time) is broadly accep-
ted as  a  condition to  describe real-world situations  (for  everyday perceptions  see 
Runggaldier and Kanzian 1998, pp. 17–52, as a condition of empirical sciences see 
Bartels 1996, pp. 23–71, or Stegmüller 1973/85, p. 60).

CONCLUSION: TWO TYPES OF GEOMETRICAL APPLICATIONS

Now, it is possible to connect both arguments: Following transcendental considera-
tions, it is necessary to possess basic concepts to describe real-world situation and to 
establish  the conditions  under  which model  building  processes  are  possible.  That 
means, for mathematical reasons it may be passable to interpret geometry as a formal-
ist or idealistic theory; but for model building processes or in contexts of natural sci-
ences, it is necessary to understand geometry as an empirical theory. For some simple 
model building processes, an understanding on the level of Geometry I may be suffi-
cient,  but  for  more elaborated tasks or  as a tool  of natural sciences,  Geometry II 
seems to be indispensable.

Against this background, we attain a “two step view” of geometrical applications: 
Since concepts of an empirical geometry are necessary to apply mathematics and, in a 
structuralist view of science, these concepts correspond to a set of intended applica-
tions taken from the world of folding and drawing, the first type of applications con-
sists of very “simple” applications whose function is completely defined by learning 
and applying elementary geometry, especially by learning to manage the reference of 
concepts like “straight line” which can only be applied due to approximation. Hence, 
geometrical  applications of a “simple” kind are  inevitable ingredients of teaching 
geometry; and there is no reason to criticize the simplicity of these applications. At 
this stage, a normative debate about goals of teaching “applied geometry” is inad-
equate, since according to the empirical character of school geometry, there is no dif-
ference between teaching applied geometry and teaching geometry at all. This shall 
be our first conclusion: To some extend, it is necessary to deal with simple geometric-
al applications; and this necessity is not an inference from a normative decision about 
the goals of teaching applied mathematics, but a consequence of the specific ontolo-
gical situation of geometry and it transcendental function as a condition of natural 
science and ordinary perception. No other part of secondary school mathematics pos-
sesses this ontological and transcendental function. For this reason, the status of geo-
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metry is unique, and the debate on geometrical applications cannot be held in the 
same way as it is possible in the scope of other parts of mathematics.

The second conclusion is related to the other type of geometrical applications: If the 
“simple” and intended applications are the only ones which students get to know, 
there will be an obvious deficit in teaching general skills and model building capacit-
ies in the sense of the pragmatic view of applied mathematics.  Exactly this is the 
function of the second type of geometrical applications. It is comprehensible that ap-
plications which are intended to fulfil this task are quite different from the first ones. 
Mr. B mentions examples taken from computer-aided design, navigation and traffic 
routing. A list of similar examples is collected by Graumann (1994). Applications of 
this kind are typically not “pure geometrical”, but includes concepts or hypotheses 
taken from natural or social sciences, basic economics or empirical tedium platitudes. 
This fact can be regarded as a further indication for our claim that there two different 
types of applications with distinct functions: Whereas the simple ones are used to 
built up geometrical concepts and to manage the vagueness of applying geometrical 
concepts to real-world situations, the more complex ones are intended to use pre-ex-
isting geometrical concepts and insights to reach some of the many educational goals 
which Kaiser sums up for model building processes in general (Kaiser 1995). For this 
purpose, a real-world problem only providing geometrical aspects often does not ap-
pear to be multifarious enough to allow a model building process whose challenges 
lie in this process (including mathematization, simplification, validation and hypo-
thesis testing), and not in geometrical deliberations and calculations.
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A FRENCH LOOK ON THE GREEK GEOMETRICAL WORKING 
SPACE AT SECONDARY SCHOOL LEVEL 

Alain Kuzniak and Laurent Vivier

Equipe Didirem Université Paris-Diderot, France

Based on the geometrical  paradigms approach,  various studies have shown some  
tension in French Geometrical Working Space between institutional expectation and  
effective implementation. In this paper, we examine the Greek system from this point  
of view and we find the same kind of tension but in a certain sense stronger than in  
France even if both countries have an ancient Euclidean tradition. 

FROM SPECIFIC FRENCH CASE TO THE PARTICULAR GREEK CASE

Since several years, it seems that curricula and syllabi converge to promote a close 
link between mathematics teaching and the “real world”. The idea of “mathematical 
literacy” is  especially  strong  in  the  PISA evaluation  which  aims  to  organize  this 
general  trend  among  European  countries.  At  the  same  time  and  close  to  this 
conception  of  mathematics,  the  constructivist  approach  is  favoured  by  national 
educational  institutions  and teachers  are  asked to substitute  “bottom up” teaching 
methods to the traditional “top down” entrance in mathematics.

In  France,  till  today,  and  at  lower  secondary  school  level  the  prominent  way 
suggested by the intended curriculum is based on “inquiry methods” and “activities” 
and relationships between mathematics and other scientific or technological domains 
are  always pointed up.  But  the link to  sensible  world is  only mentioned and the 
emphasis is put on the logical rigour of mathematics. The relationship to the “real 
world” seems really far off and into everyday classroom, inquiry based methods are 
left aside. 

In the special case of geometry, we were concerned with the contradiction between 
official expectation and the crude reality of the classroom. To understand and explain 
the  phenomenon,  the  notion  of  geometrical  paradigms  (Houdement  and  Kuzniak, 
1999) and of geometrical working spaces (Kuzniak, 2007) have been used to explicit 
the different meanings of the term geometry. The field of geometry can be mapped 
out  according  to  three  paradigms,  two of  which  –  Geometry  I  and  II  –  play  an 
important role in today’s secondary education. Each paradigm is global and coherent 
enough to  define  and structure  geometry  as  a  discipline  and to  set  up  respective 
working spaces suitable to solve a wide class of problems.

This first idea is completed by the following hypothesis on the possible influence of 
these  paradigms  in  geometry  education  and  on  the  poor  implementation  of  new 
teaching method.  The spontaneous  geometrical  epistemology of  teachers enters in 
contradiction  with  mathematical  epistemology  embedded  in  the  new  teaching 
methods. In other words: the geometrical work done and aimed by teachers could be 
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of  another  nature  than  the  institutional  expected  one.  The  teacher’s  geometrical 
thinking is led by another geometrical paradigm as the paradigm promoted by the 
institution.  Moreover this way of thinking leads to prefer pedagogical  methods in 
contradiction with inquiry based methods.

Our investigation  work has its  roots  in the French context  but  some comparative 
studies  showed us  that  such a  tension  could  exist  in  other  countries.  Houdement 
(2007)  has  presented  in  CERME  5  a  comparison  of  magnitude  measurement 
problems  in  Chile  and  in  France.  The  social  and  economical  contexts  are  quite 
different  in  both  countries  and  so,  we  were  interested  to  have  a  look  on  other 
European countries  to  verify  if  this  kind of  tension  really  exists  and how it  was 
managed.  We have had the opportunity  to work with Greek colleagues and to be 
aware of a great change in the curriculum based on the real world and turning back to 
the Euclidean tradition. We present the first part of our work which gives our analysis 
of the Greek situation through our viewpoint.

GENERAL FRAME OF THE STUDY

The theoretical frame we used has been soon described in detail in former CERME 
sessions (Houdement  and Kuzniak 2003, Houdement 2007) and we refer to these 
papers for complements. We retain only here some particular elements used in our 
description of the Greek situation.

As we are interested in the awkward relationships between reality and mathematics 
education, we will focus on the role the reality plays in the different paradigms. In the 
first one, Natural Geometry or Geometry I (GI), the validation depends on reality and 
the  sensible  world.  In  this  Geometry,  an  assertion  is  accepted  as  valid  using 
arguments based upon experiment and deduction. The confusion between the model 
and reality is great and any argument is allowed to justify an assertion and convince. 
This  Geometry  could be  seen as  an empirical  science and it  is  possible  to  build 
empirical  concepts  depending  on  the  experience  of  the  “real  world”.  Natural 
Axiomatic  Geometry,  or  Geometry  II  (GII),  whose archetype is  classic  Euclidean 
Geometry is built on a model that approaches reality. Once the axioms are set up, 
proofs have to be developed within the system of axioms to be valid. In the formal 
Axiomatic  Geometry,  or  Geometry  III  (GIII),  the  system  of  axioms,  which  is 
disconnected from reality, is central and leads how to argue. The system of axioms is 
complete and unconcerned with any possible applications in the world. In that case, 
the system creates its reality. Concepts are given a priori and come “from the Book” 
and  so  “top  down”  form  of  mathematics  education  seems  well  fitted  to  this 
conception.  The  study  of  Greek  mathematical  education  will  show  that  this 
dichotomy GII / GIII is not so simple.

To find a possible tension or contradiction between the institutional expectation and 
the  teacher's  approaches,  we  will  describe  what  we  call  the  personal  teacher's 
Geometrical Working Space (GWS) faced to the GWS expected and promoted by the 
national  institution  in  charge  of  mathematics  education.  More  precisely  (Kuzniak 
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2006), the Geometrical Working Space (GWS) is the place organized to ensure the 
geometrical work. It makes networking the three following components:  the real and 
local space as material support, the artefacts as drawings tools and computers put in 
the  service  of  the  geometrician  and  a  theoretical  system  of  reference  possibly 
organized in a theoretical model depending on the geometrical paradigm. To ensure 
that the components are well used, we need to focus on some cognitive processes 
involved into the geometrical activity and particularly the visualization process with 
regard  to  space  representation  and  the  material  support,  the  construction  process 
depending on the used tools (rulers,  compass,  etc.)  and on the configuration,  and 
finally reasoning in relation to a discursive process.

THE NEW CURRICULUM IN GREECE

Since  2007,  a  new  curriculum  for  compulsory  education  is  implemented  in 
gymnasium (grades 7 to 9) in Greece and summarised in a list of ten highlights. It is 
presented as cross-thematic (1st and 5th highlights) and aims to connect the academic 
disciplines, everyday life, working world, history, technological improvement,  etc. 
Within the flexible zone (4th highlight),  some hours are planned for reaching this 
specific goal. Primary school learning explicitly rests on the Bruner's constructivist 
theory and assessment is now an essential part of the learning process (8th highlight). 
Sources  and  goals  of  connection  with  realty  are  in  the  9th highlight,  “A  Broad 
Spectrum of Literacies”:

Successful living in post-modern times presupposes that one is  fully  literate in many 
areas, such as reading, science, technology and mathematics in order to face international 
evaluation  (PISA,  TIMS,  etc.)  which  demand  more  connections  between  school 
knowledge and the life reality.

The present mathematical syllabus expands the ancient one with no change in the 
content. It is written in a three columns table where some more detailed mathematical 
sections  appear  into  the  traditional  blocks  (arithmetic,  algebra,  geometry). 
Mathematical skills,  which have to be learned by pupils, are described in the first 
column, the main mathematical notions are in the second and in the third one some 
activities are proposed, often to introduce some mathematical notions.

New textbooks are conformed to syllabus with no surprise since they are chosen by 
the curriculum designer Pedagogical Institute, one for each level. Textbooks structure 
is quite the same as the syllabus structure and activities coming from the syllabus 
third  column  can  be  found  with  few  changes  in  textbooks.  For  these  reasons, 
institutional GWS means the GWS presented by the curriculum including the official 
textbooks.

A SO FAR REALITY

We will highlight some internal slides into the institutional GWS itself. First, in spite 
of the curriculum demand, new technologies have to be used (7th highlight), syllabus 
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and textbooks do not mention software, computers or Internet. Beside this slide inside 
the curriculum, the reality is concerned by a second and less obvious one.

According  to  the  cross-thematic  curriculum,  reality  and everyday  life  have  to  be 
embedded in the learning process. But when everyday life is mentioned in syllabus it 
is  without  any details  and only one syllabus activity could be described as real : 
measure the width of the street and pavement in front of the school. But the difficulty 
to follow this curriculum directive is more obvious in textbooks. This real activity in 
syllabus does not  appear in the A’ textbook (grade 7),  and if there are numerous 
activities based on a “real picture”, they are not relevant for this purpose for several 
reasons:

- The 3D/2D problem: angles and distances on the textbook are not the good ones. 
For these kind of  activities,  geometry  does not  seem to be able to give the right 
answer!

- A lot of activities refer to the macro-space but authors represent reality – probably 
under editorial constraint – with an image or photography. On these pictures, most of 
the time, some geometric element are placed and the reality is already mathematized. 
However, we often find activities and exercises with geographic maps, as it is stated 
in syllabus. But reality is once more already mathematized.

         

       

- Activities and exercises are most of the time based on a picture of a real problem 
with a geometric diagram with all the measures needed to solve the problem, no more 

ΓΑ=6371 km, Α Γ Σ =89,05°, find 
ΓΣ. (B’ page 151)

Why an airplane realize a lower distance 
than a boat to go from Athens to Samos? 

(A’ page 164)

Students have to find the lower distance between the point A at the house to the 
water. (A’ page 184)
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no less. Reality is not the point and is viewed through a picture already turned into a 
geometrical task support. 

As we notice it, the geometrical local space is almost always the micro-space of a 
sheet  of  paper  which  is  sometimes  a  representation  of  a  macro-space  problem 
(geographic maps, pictures, etc.). Actually, the reality in textbooks appears from a 
relevant point of view only in the GI paradigm [1], on a sheet of paper. And so we 
can characterize this internal slide: everyday life is not taking into account and reality 
is only treated within the GI paradigm, inside geometry.

GYMNASIUM INSTITUTIONAL GWS

Since  reality  is  not  actually  present  in  institutional  GWS,  except  within  the  GI 
paradigm, we study the institutional GWS all along the gymnasium.

Artefacts, visualization and diagrams constructions: the GI paradigm

Geometric tools (ruler, compass, protractor, square, tracing paper) are only mentioned 
in syllabus at the A’ class (grade 7). However, construction activities are present all 
along the gymnasium (much more at the first class). In the A’ textbook, tools are 
pictured in many places, especially for showing how to construct. Tracing paper is 
used in many geometry sections, often to introduce a new concept. In the B’ and G’ 
textbooks (grades 8, 9) geometric tools are never drawn, sometimes mentioned.

There is no freehand construction in syllabus, no freehand diagram in textbooks and 
we do not find any exercise where pupils have to draw such a kind of diagram. Some 
activities proposed in syllabus (third column of A’ class) are in GI, excluding, or not, 
visualization:                

An aim of syllabus, at B’ class (grade 8), section trigonometry, is to construct an 
angle whose sinus, cosine or tangent are known. But we do not find any activity on 

Why it is not horizontal? 
(G’ page 209)Find ΔΓ. (G’ page 223)Find ΔΕ. (B’ page 139)

How many angles? Find in measuring the 
lower distance between A 

and B.

Draw the perpendiculars to ε 
passing by these points.
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this topic in textbook. At the final class (grade 9) the section on dilation is directed by 
the GI paradigm with numerous drawing activities (7 exercises of the 9 at the end of 
the section ask for drawing).

Formal proofs: the GII paradigm

Proof process should start as it is written in syllabus preamble, but no formal proof is 
mentioned in the detailed table of mathematics syllabus. There are some theorems, 
definitions, properties.

Very few examples of formal proofs are given in the A’ textbook (grade 7) and their 
solutions  are  always  completely  written.  It  is  quite  the  same  situation  in  the  B’ 
textbook (grade 8), except the proof that a dodecagon is regular (exercise 8, page 
185). In the B’ area section, a lot of exercises ask to “show that” but, in fact, the 
solution is always given by a calculation of an area or a length.

In G’ textbook (grade 9) there is a great change with a lot of exercises where pupils 
have to prove. At the section on triangle congruence, the 21 exercises at the end of 
the section ask for a formal proof and the theoretic system of reference, with the three 
criteria of triangle congruence, is clearly directed by the GII paradigm. In this section, 
there are four solved exercises (pages 191, 192) which ask for a formal proof on 
triangle congruence (see below, for example, the figure on the left). At the end of the 
section (pages 194-196) some similarly exercises are given (see below, for example, 
the  figure  on  the  right).  One could  thought  that  the  solutions  of  the  four  solved 
exercises could give a proof model to students to solve exercises at the section end.

The diagrams similarity section is also in GII paradigm (half of the exercises ask for a 
formal proof, the others are on ratio and length calculation).

Gymnasium paradigm

At the first class A’, both in curriculum and textbook, the main paradigm is GI and it 
is generally well assumed. However, the paradigm in which pupils have to work is 
not  always  clear.  For  example,  the  following  syllabus  activity  starts  in  GI  and 
finishes, with questions g) and h), necessarily in GII:

a) Let O a point and a line ε and the point A so that OA is the distance from O to ε.

 

Prove that ΔΒ=ΔΓ (ΑΔ is the bisector of 
Â). With solution. (G’ page 191)

Prove that AΣ=BΣ (OA=OB, Oδ is 
bisector of Ô ). Exercise without 

solution. (G’ page 194)
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b) Let B another point on ε, find the symmetrics A' and B' of A and B through O and let 
ε' the line A'B'.

c) Which is the symmetric of ε through O ?

d) Which is the symmetric of the angle OÂB ?

e) How are the angles OÂB and OÂ'B'?

f) How is the angle OÂ'B'?

g) How are ε and ε' with respect to AA'?

h) How are ε and ε'?

Didactic contract is not very clear for the intermediate questions c), d) and e): GI, 
with tools or visualization, or GII paradigm? This activity is given in textbook with 
only one question and a complete solution below. The task paradigm is clearly GII: 
the answers corresponding to questions e) to h) are formal proofs. This example is a 
non explicit slide from GI to GII in a class where GI is the main paradigm [2].

Artefacts  and  diagrams  constructions  are  used  in  many  activities  to  discover 
geometrical properties, as it is written in the curriculum according to the bottom-up 
point of view: from the GI paradigm arises the GII paradigms. Some activities given 
in  the  third  column  of  syllabus  are  in  GI,  to  construct,  to  observe  a  property 
(sometimes in first  class  with the use of tracing paper and folding).  This  kind of 
activities can be find in all gymnasium textbooks (grades 7 to 9).

In gymnasium, from grade 7 to 9, geometrical tasks are very different. The GWS 
depends on the class and the section. In the first class GWS is clearly directed by GI 
but there are some slides in favour of the GII paradigm. In the last class, the GWS of 
the triangle congruence section is directed by GII while it is directed by GI in the 
section on dilation.  In this last  class,  there are several very different GWS which 
seem not to be connected.

EUCLIDEAN PRESSURE ON TEACHER’S PERSONAL GWS

This section is supported by six secondary teachers’ interviews where we focussed on 
the  new  curriculum and  more  specifically  on  reality,  geometrical  tools,  diagram 
constructions  and  formal  proofs  in  textbooks  and  in  classrooms.  We  turn  out  to 
teacher’s personal GWS which is quite different from the institutional one as we will 
show it. Before studying the GWS teachers, we point out the particular importance of 
Euclidean Geometry in the Greek syllabus and for Greek teachers.

The paradoxical place of Euclidean geometry

According  to  the  Lyceum syllabus,  students  have  to  learn  a  geometry  based  on 
axioms with formal reasoning (grade 10) and measurement of magnitudes becomes 
the  main  geometric  topic  at  grade  11.  The  unique  geometry  textbook  is  entitled 
“Euclidean Geometry” and it is used in the two first classes (grade 10 and 11). Its 
content is close to the syllabus and to the classical Euclidean Geometry with a strong 
axiomatic  point  of  view,  except  for  measurement.  In  textbook,  and  for  lyceum 
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teachers, geometry starts from zero with Euclidean axioms. Construction problems 
are  of  theoretical  nature  with  letters  and magnitude,  such  as  AB=a,  without  any 
measure: geometrical tools are virtual and consist of compass and ruler according to 
the Euclidean tradition.

If  Geometry  is  taught  in  compulsory  education  and  during  the  two  first  lyceum 
classes (till  grade 11), geometric knowledge is not assessed at the very important 
lyceum final test: the University where students will enter depends of this final test. 
Students  know  this  fact  and  are  less  concerned  with  geometry  than  the  others 
mathematics domains and do not work geometry especially in the numerous private 
institutes  (frontystiria)  where  they  could  follow additional  and expensive  courses 
after the class time. It is a quite great contrast: a lot of geometry teaching times for 
nothing at the end? Teachers we interviewed told us that geometry is not important in 
the curriculum because of the hidden curriculum and, finally, “geometry is taught for 
culture, for Euclid”.

Teachers’ personal GWS

Gymnasium teachers  think  that  pupils  have  to  learn  how to  construct  geometric 
diagrams,  but  they  think  that  it  is  not  the  main  point  of  mathematics  learned in 
gymnasium. So as they have no time to teach all the syllabus, teachers often choose 
to teach very quickly diagrams constructions despite its importance and the fact that 
students have troubles with the use of drawing tools (especially the protractor) and 
with constructions.  In  the personal  teacher's  GWS,  directed by  GII,  the  aim of  a 
diagram is to set a conjecture and the proof do not need an exact figure. That explains 
why  teachers  think  that  a  freehand  drawing  is  equivalent  to  a  drawing  with 
geometrical tools and the first one is done more quickly. Teachers’ local space could 
be anywhere they can draw a freehand diagram, for example a pack of cigarettes as 
two teachers told us. We see here a great difference between teachers’ beliefs and 
institutional content: in syllabus, nor in textbooks, there is none freehand drawing.

Another  example  of  the  prominence  of  GII  in  the  personal  teacher  GWS  is  the 
importance they give to properties of quadrilaterals and triangles. They all think that 
these properties are fundamental even if they do not know the role of these geometric 
objects  in  mathematics  class.  As  teachers  rate  highly  Euclidean  Geometry,  a 
sufficient reason to teach triangles and quadrilaterals is given by their importance in 
the theoretic system of reference.

To conclude this part, we can say that the teachers’ GWS is clearly directed by a 
strong GII, almost GIII because of the axiomatic theoretic system of reference.

GWS TENSION

The new Greek curriculum demands to take into account reality. But the interviewed 
teachers told us how it  is difficult  for them: they do not know how to teach in a 
constructive way which is often opposite to their top-down learning conception. They 
concluded  that  Greek  teachers  do  not  like  this  new way  of  teaching  and  do  not 
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understand it. Teachers’ learning beliefs agree with the internal slide we pointed out 
about the everyday life in curriculum.

In  the  case  of  diagrams  constructions,  teachers'  GWS  is  clearly  against  the 
institutional GWS, and not only in considering freehand drawing. Teachers do not 
only prefer teaching others geometric topics but they give all the diagrams in tests too 
to go over the lack of their pupils [3]. The same opposition to the institutional GWS 
can be seen with the use of tracing paper. According to syllabus, tracing paper has to 
be used as a geometric tool in A’ class (grade 7). It is used in many places with a 
particular and original graphical representation in the A’ textbook and it is explained 
how to use it. But creativity stops at the school border and tracing paper is never used 
in class!

In gymnasium, formal proof is usually taught during the last class year (grade 9), 
more specifically, in a Euclidean section about triangle congruence. In order to know 
how teachers could initiate their students to the formal proof in one year, we asked 
them about  the  possible  use  of  the  four  solved  activities  we  spoke  about  in  the 
“Formal proofs: the GII paradigm” section. They are indeed proof models and, for 
assessment, students have to learn ten lesson proofs by heart which one of them is 
asked  in  test.  This  proof  process  initiation  is  again  opposite  to  the  curriculum 
expectation.

In  gymnasium,  there  is  a  distance  between institutional  and teachers  GWS.  That 
creates a tension which is supported by the different beliefs on learning and geometry 
among teachers and curriculum writers. Moreover, teachers do not really deal with 
the existing and remaining students' difficulties with diagram constructions and the 
proof  process  initiation  is  based  on  a  learning  by  heart.  This  tension  between 
institutional and teachers’ GWS is specific to gymnasium, it completely disappears at 
lyceum, but what about pupils?

CONCLUSION

Geometry positions in Greece and in France are closed even if we point out some 
main differences. In both countries, even if curriculum emphasizes its place, reality is 
not taken into account. Similarly, the transitions between paradigms GI and GII are 
most of the times ambiguous and implicit and give rise to fuzzy GWS.

The GI paradigm seems to be more assumed in Greece than in France and in France 
formal proofs are taught all along the junior high school. But the main curriculum 
difference takes place at  the lyceum: in Greece,  axiomatic  Euclidean geometry is 
taught,  not  in  France,  and  in  France  geometry  is  assessed  in  final  test  for  some 
sections, not in Greece. Geometry is taught in Greece only for cultural reasons, for 
Euclid, whereas in France the geometrical work is oriented by the GII paradigm and 
university  studies.  However,  according  to  the  six  teachers’  interviews,  the  Greek 
teachers’  GWS is  quite  different  from the  French teachers’  GWS because  of  the 
axiomatic theoretic system of reference: GII paradigm is well structured and stronger 
in Greece than in France. In Greece, the cultural tradition of Euclid is more important 
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than in France and geometry knowledge seems to come from the Book [4]. This last 
point strengthens the GWS tension in junior high school which seems to be stronger 
in Greece than in France.

NOTE

1. The exercise on a map are in GI, but it could be solved by visualization or measurement, pupils have to choose.

2. This non explicit slide can also be seen, for example, at page 227 of A’ textbook, examples 1 and 2.

3. In  the A’ final  test  we studied there is no construction;  lyceum pupils have problems with geometric  diagrams 

constructions, even for the equilateral triangle whereas it is a skill of the A’ gymnasium class (grade 7). 

4. According to Toumasis (1990) the Book is not Euclid’s Elements but Legendre’s geometry elements.
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This study investigated the role of various aspects of apprehension, i.e., perceptual, 
operative and discursive apprehension, in geometrical figure understanding. Data 
were collected from 1086 primary and secondary school students. Structural 
equation modelling affirmed the existence of six first-order factors revealing the 
differential effect of perceptual and recognition abilities, the ways of figure 
modification and measurement concepts, three second-order factors indicating the 
differential effects of the various aspects of geometrical figure apprehension and a 
third-order factor representing the geometrical figure understanding. It also 
provided support for the invariance of this structure across the two age groups. 
However, findings revealed differences between primary and secondary school 
students’ performance and in the way they behaved during the solution of the tasks.  
 

INTRODUCTION AND THEORETICAL FRAMEWORK  
In geometry three registers are used: the register of natural language, the register of 
symbolic language and the figurative register. In fact, a figure constitutes the external 
and iconical representation of a concept or a situation in geometry. It belongs to a 
specific semiotic system, which is linked to the perceptual visual system, following 
internal organization laws. As a representation, it becomes more economically 
perceptible compared to the corresponding verbal one because in a figure various 
relations of an object with other objects are depicted. However, the simultaneous 
mobilization of multiple relationships makes the distinction between what is given 
and what is required difficult. At the same time, the visual reinforcement of intuition 
can be so strong that it may narrow the concept image (Mesquita, 1998). Geometrical 
figures are simultaneously concepts and spatial representations. Generality, 
abstractness, lack of material substance and ideality reflect conceptual characteristics. 
A geometrical figure is also possesses spatial properties like shape, location and 
magnitude. In this symbiosis, it is the figural facet that is the source of invention, 
while the conceptual side guarantees the logical consistency of the operations 
(Fischbein & Nachlieli, 1998). Therefore the double status of external representation 
in geometry often causes difficulties to students when dealing with geometrical 
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problems due to the interactions between concepts and images in geometrical 
reasoning (e.g. Mesquita, 1998). 
Duval (1995, 1999) distinguishes four apprehensions for a “geometrical figure”: 
perceptual, sequential, discursive and operative. To function as a geometrical figure, 
a drawing must evoke perceptual apprehension and at least one of the other three. 
Each has its specific laws of organization and processing of the visual stimulus array. 
Particularly, perceptual apprehension refers to the recognition of a shape in a plane 
or in depth. In fact, one’s perception about what the figure shows is determined by 
figural organization laws and pictorial cues. Perceptual apprehension indicates the 
ability to name figures and the ability to recognize in the perceived figure several 
sub-figures. Sequential apprehension is required whenever one must construct a 
figure or describe its construction. The organization of the elementary figural units 
does not depend on perceptual laws and cues, but on technical constraints and on 
mathematical properties. Discursive apprehension is related with the fact that 
mathematical properties represented in a drawing cannot be determined through 
perceptual apprehension. In any geometrical representation the perceptual recognition 
of geometrical properties must remain under the control of statements (e.g. 
denomination, definition, primitive commands in a menu). However, it is through 
operative apprehension that we can get an insight to a problem solution when looking 
at a figure. Operative apprehension depends on the various ways of modifying a 
given figure: the mereologic, the optic and the place way. The mereologic way refer 
to the division of the whole given figure into parts of various shapes and the 
combination of them in another figure or sub-figures (reconfiguration), the optic way 
is when one made the figure larger or narrower, or slant, while the place way refer to 
its position or orientation variation. Each of these different modifications can be 
performed mentally or physically, through various operations. These operations 
constitute a specific figural processing which provides figures with a heuristic 
function. In a problem of geometry, one or more of these operations can highlight a 
figural modification that gives an insight to the solution of a problem. 
Even though previous research studies investigated extensively the role of external 
representations in geometry (e.g. Duval, 1998; Kurina, 2003), the cognitive processes 
underline the four apprehensions for a “geometrical figure” proposed by Duval 
(1995, 1999) have not empirically verified yet. Keeping in mind the transition 
problem from one educational level to another universally (Mullins & Irvin, 2000), 
our main aim was to confirm a three-order theoretical model concerning the primary 
and secondary school students’ geometrical figure understanding.  

HYPOTHESES AND METHOD   
In the present paper four hypotheses were examined: (a) Perceptual, discursive and 
operative apprehension influence primary and secondary students’ geometrical figure 
understanding, (b) There are similarities between primary and secondary school 
students in regard with the structure of their geometrical figure understanding, (c) 

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 697



  
Differences exist in the geometrical figure understanding performance of primary and 
secondary school students and (d) Differences exist in the way primary and secondary 
school students behave during the solution of the perceptual, discursive and operative 
apprehension tasks. It should be mentioned that the influence of sequential 
apprehension in geometrical figure understanding is not investigated since the figure 
construction is not given much emphasis in the Cypriot curriculum.     
The study was conducted among 1086 students, aged 10 to 14, of elementary (Grade 
5 and 6) and secondary (Grade 7 and 8) schools in Cyprus (250 in Grade 5, 278 in 
Grade 6, 230 in Grade 7, 328 in Grade 8). The a priori analysis of the test that was 
constructed in order to examine the hypotheses of this study is the following: 
1. The first group of tasks includes task 1 (Pe1a, Pe1b, Pe1c, Pe1d, Pe1e, Pe1f, Pe1g) 

and 2 (Pe2a, Pe2b, Pe2c, Pe2d, Pe2e, Pe2f) concerning students’ geometrical 
figure perceptual ability and their recognition ability, respectively.  

2. The second group of tasks includes area and perimeter measurement tasks, namely 
task 3 (Op3), 4 (Op4), 5 (Op5) and 6 (Op6a, Op6b, Op6c). These tasks examine 
students’ operative apprehension of a geometrical figure. The tasks 3, 4 and 5 
require a reconfiguration of a given figure, while task 6 demands the place way of 
modifying two given figures in a new one in order to be solved.    

3.  The third group of tasks includes the verbal problems 7 (Ve7), 8 (Ve8), 9 (Ve9), 
10 (Ve10) and 11 (Ve11) that correspond to discursive figure apprehension. On 
the one hand, the verbal problems 7 and 8 demand increased perceptual ability of 
geometrical figure relations and basic geometrical reasoning. On the other hand, 
tasks 9, 10 and 11 are verbal area and perimeter measurement problems. In verbal 
problem 9 visualization (e.g. Presmeg, 2007) facilitates its solution process, while 
in verbal problems 10 and 11 the concept of epistemological obstacles (Brousseau, 
1997) may interfere the way of solving them.  

Representative samples of the tasks used in the test appear in the Appendix. Right 
and wrong or no answers to the tasks were scored as 1 and 0, respectively. The results 
concerning students’ answers to the tasks were codified with Pe, Op and Ve 
corresponding to perceptual, operative and verbal problem tasks, respectively, 
followed by the number indicating the exercise number.  
In order to explore the structure of the various geometrical figure understanding 
dimensions a third-order confirmatory factor analysis (CFA) model for the total 
sample was designed and verified. Bentler’s (1995) EQS programme was used for the 
analysis. The tenability of a model can be determined by using the following 
measures of goodness-of-fit: 2x , CFI and RMSEA. The following values of the three 
indices are needed to hold true for supporting an adequate fit of the model: 2x /df < 2, 
CFI > 0.9, RMSEA < 0.06. The a priori model hypothesized that the variables of all 
the measurements would be explained by a specific number of factors and each item 
would have a nonzero loading on the factor it was supposed to measure. The model 

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 698



  
was tested under the constraint that the error variances of some pair of scores 
associated with the same factor would have to be equal. A multivariate analysis of 
variance (MANOVA) was also performed to examine if there were statistically 
significant differences between primary and secondary school students concerning 
their understanding in the various geometrical figure dimensions. For the analysis of 
the collected data the similarity statistical method (Lerman, 1981) was conducted 
using the statistical software C.H.I.C. (Bodin, Coutourier, & Gras, 2000). A similarity 
diagram of primary and secondary school students’ responses at each task or problem 
of the test was constructed. The similarity diagram allows for the arrangement of the 
tasks into groups according to the homogeneity by which they were handled by the 
students.  
RESULTS 
Confirmatory factor analysis model. Figure 1 presents the results of the elaborated 
model, which fitted the data reasonably well [ 2x (220) = 436.86, CFI = 0.99, RMSEA 
=0.03, 90%, confidence interval for RMSEA 0.026-0.034]. The first, second and third 
coefficients of each factor stand for the application of the model in the whole sample 
(Grade 5 to 8), primary (Grade 5 and 6) and secondary (Grade 7 and 8) school 
students, respectively. The errors of variables are omitted.  
The third-order model which is considered appropriate for interpreting geometrical 
figure understanding, involves six first-order factors, three second-order factors and 
one third-order factor. The three second-order factors that correspond to the 
geometrical figure perceptual (PEA), operative (OPA) and discursive (DIA) 
apprehension, respectively, are regressed on a third-order factor that stands for the 
geometrical figure understanding (GFU). Therefore, it is suggested that the type of 
geometric figure apprehension does have an effect on geometrical figure 
understanding, verifying our first hypothesis. On the second-order factor that stands 
for perceptual apprehension the first-order factors F1 and F2 are regressed. The first-
order factor F1 refers to the perceptual tasks, while the first-order factor F2 to the 
recognition tasks. Thus, the findings reveal that perceptual and recognition abilities 
have a differential effect on geometrical figure perceptual apprehension. On the 
second-order factor that corresponds to operative apprehension the first-order factors 
F3 and F4 are regressed. The first-order factor F3 consists of the tasks which require 
a reconfiguration of a given figure, while the tasks demanding the place way of 
modifying two given figures in a new one in order to be solved constitute the first-
order factor F4. Therefore the results indicate that the ways of figure modification 
have an effect on operative figure understanding. The first-order factors F5 and F6 
are regressed on the second-order factor that stands for discursive apprehension, 
indicating the effect measurement concept exerts on this type of geometric figure 
apprehension. To be specific, the first-order factor F5 refers to the verbal problems 
which demand increased perceptual ability of geometrical figure relations and basic 
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geometrical reasoning, while the first-order factor F6 consists of the verbal perimeter 
and area problems.  

 
Figure 1. The CFA model of the geometrical figure understanding. 
To test for possible similarities between the two educational level groups’ 
geometrical figure understanding, multiple group analysis is applied, where the 
proposed three-order factor model is validated for elementary and secondary school 
students separately. The model is tested under the assumption that the relations of the 
observed variables to the first-order factors, of the six first-order factors to the three 
second-order factors and of the three second-order factors to the third-order factor 
will be equal across the two educational levels. The fit indices of the model tested are 
acceptable [x2 (485) = 903.78, CFI= 0.97, RMSEA= 0.04, 90% confidence interval 
for RMSEA= 0.036, 0.044]. Thus, the results are in line with our second hypothesis 
that the same geometrical figure understanding structure holds for both the 
elementary and the secondary school students. It is noteworthy that some factor 
loadings are higher in the group of the secondary school students suggesting that the 
specific structural organization potency increases across the ages.   
The effect of students’ educational level. In order to determine whether there are 
significant differences between primary and secondary school students concerning 
their performance in the different aspects of geometrical figure understanding, a 
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multivariate analysis of variance (MANOVA) is performed. Table 1 presents the 
means and the standard deviations for these dimensions in the two educational levels.  
Overall, the effect of students’ educational level (primary or secondary) is significant 
(Pillai’s F(6,1079)=34.43, p<0.001). In particular, the mean value of secondary school 
students’ geometrical figure perceptual ability (F1) is statistically significant higher 
(F(1,1079)=79.51, p<0.001) than the mean value of primary school students. Similarly, 
the mean value of secondary school students’ recognition ability (F2) is statistically 
significant higher (F(1,1079)=38.81, p<0.001) than the mean value of primary school 
students. 
In tasks demanding reconfiguration (F3) secondary school students’ performance is 
statistically significant higher (F(1,1079)=74.34, p<0.001) than primary school students’ 
performance. In the same way, the mean value of secondary school students’ 
performance in place way modification tasks (F4) is statistically significant higher in 
comparison with primary school students’ performance (F(1,1079)=36.03, p<0.001).  
Concerning primary and secondary school students’ performance in verbal problems 
the results are quite different in the two dimensions. Particularly, in verbal problems 
7 and 8 (F5) the performance of secondary school students is statistically significant 
higher (F(1,1079) =105.38, p<0.001) than the performance of primary school students. 
In contrast, although the performance of secondary school students in verbal 
problems 9, 10 and 11 (F6) is also higher than the performance of primary school 
students this difference is not statistically significant (F(1,1079)=0.03, p=0.85).  
Therefore, the above findings verify the third hypothesis stating that differences exist 
in the geometrical figure understanding performance of primary and secondary school 
students. In particular, secondary school students’ performance is higher in all the 
dimensions of the geometrical figure understanding relative to the primary school 
students’ performance.  
Level  F1 F2 F3 F4 F5 F6 

 X  SD X  SD X  SD X  SD X  SD X  SD 

Primary 0.45 0.41 0.62 0.26 0.32 0.31 0.31 0.38 0.38 0.40 0.247 0.28

Secondary 0.66 0.38 0.72 0.27 0.49 0.35 0.45 0.42 0.63 0.40 0.251 0.31

Table 1: Means and standard deviations in geometrical figure apprehension 
dimensions in primary and secondary school students 

Similarity diagrams. Figure 2 and 3 present the similarity diagrams of primary and 
secondary school students’ responses to the tasks of the test. Particularly, in Figure 2 
two clusters (i.e., groups of variables) can be distinctively identified. The first cluster 
consists of the variables corresponding to the perceptual tasks (Pe1a, Pe1b, Pe1c, 
Pe1d, Pe1e, Pe1f, Pe1g). In the second cluster the variables representing the 
recognition, operative and verbal problem solving tasks are included (Pe2a, Pe2c, 
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Pe2b, Pe2e, Ve11, Pe2d, Pe2f, Op6c, Ve7, Ve8, Ve9, Ve10, Op6a, Op6b, Op3, Op5, 
Op4). 

  
Figure 2. Similarity diagram of primary 
school students’ responses to the test 

Figure 3. Similarity diagram of secondary 
school students’ responses to the test 

In Figure 3, three clusters can be identified. The first cluster includes the perceptual 
tasks and an operative task (Pe1a, Pe1b, Pe1c, Pe1d, Pe1e, Pe1f, Pe1g, Op6c). The 
second cluster consists of an operative task and the verbal problem solving tasks 
(Op5, Ve8, Ve9, Ve10, Ve11, Ve7). The third cluster involves the recognition tasks 
and some of the operative tasks (Pe2a, Pe2b, Pe2c, Pe2d, Pe2e, Pe2f, Op6a, Op6b, 
Op3, Op4). Comparing the two diagrams some relations between the variables remain 
invariant indicating a stability of the way the primary and secondary school students 
behave during their solution process (e.g. Pe1a, Pe1b, Pe1c, Pe1d, Pe1e, Pe1f, Pe1g 
and Ve8, Ve9, Ve10).  
However, differences are observed in many relations of variables. For instance, 
primary school students behave in a similar way during the solution of the 
recognition and verbal problem solving tasks, while secondary school students 
behave in a similar way during the perceptual, some operative and verbal problem 
solving tasks. Furthermore, in Figure 3 the three clusters are strongly connected with 
each other indicating that secondary school students behave in a consistent way 
during the solution of the perceptual, operative and discursive tasks. In contrast, 
primary school students deal with perceptual tasks in isolation indicating a 
compartmentalized way of thinking (Duval, 2002). The similarity diagrams’ results 
provide evidence for differences in the way primary and secondary school students 
behave during the solution of the perceptual, discursive and operative apprehension 
tasks, verifying the fourth hypothesis.     
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CONCLUSIONS 
This study investigated the role of perceptual, operative and discursive apprehension 
in geometrical figure understanding. Structural equations modelling affirmed the 
existence of six first-order factors indicating the differential effect of perceptual and 
recognition abilities, the ways of figure modification and measurement concept, three 
second-order factors representing perceptual, operative and discursive apprehension 
and a third-order factor that corresponded to the geometrical figure understanding. It 
also suggested the invariance of this structure across elementary and secondary 
school students. Thus, emphasis should be given in all the aspects of geometrical 
figure apprehension in both educational levels concerning teaching and learning.  
Furthermore, differences existed in the geometrical figure understanding performance 
of primary and secondary school students. Particularly, secondary school students’ 
performance was higher in all the dimensions of the geometrical figure understanding 
relative to the primary school students’ performance. The performance improvement 
can be attributed to the general cognitive development and learning take place during 
secondary school. In fact, secondary school curriculum in Cyprus involves many 
concepts already known and mastered during primary school. This repetition of 
concepts leads to higher performance even though primary and secondary school 
instructional practices differ. 
Concerning the way students behaved during geometrical tasks solution process it 
was observed that the behaviour of primary and secondary school students was 
similar during the solution process of some of the tasks. This finding revealed that 
geometrical figure understanding stability existed to a certain extent in these students’ 
behaviour. However, in some cases differences were observed in the way the two age 
groups of students dealt with geometrical figure understanding tasks. To be specific, 
secondary school students behaved in a consistent way during the solution of the 
perceptual, operative and discursive tasks. In contrast, primary school students dealt 
with perceptual tasks in isolation indicating a compartmentalized way of thinking. In 
fact, the results provided evidence for the existence of three forms of elementary 
geometry, proposed by Houdement and Kuzniak (2003). We may assume that in this 
research study, primary school teaching is mainly focused on Geometry I (Natural 
Geometry) that is closely linked to the perception, is enriched by the experiment and 
privileges self-evidence and construction. On the other hand, secondary school 
teaching gives emphasis to Geometry II (Natural Axiomatic Geometry) that it is 
closely linked to the figures and privileges the knowledge of properties and 
demonstration. As a result, in the case of primary school students geometrical figure 
is an object of study and of validation, while in the case of secondary school students 
geometrical figure supports reasoning and “figural concept” (Fischbein, 1993).        
It seems that there is a need for further investigation into the subject with the 
inclusion of a more extended qualitative and quantitative analysis. In the future an 
investigation of the way students who master perceptual, operative and discursive 
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apprehension behave in complex activities that require a coordinated approach to 
these geometrical figure understanding dimensions should be conducted. It would be 
also interesting to compare the strategies primary and secondary school students use 
in order to solve perceptual, operative and discursive apprehension tasks. Besides, 
longitudinal performance investigation in geometrical figure understanding tasks for 
specific groups of students (e.g. low achievers) as they move from elementary to 
secondary education should be carried out. 
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APPENDIX 
1. Name the squares in the given figure: 

 
(Pe1a, Pe1b, Pe1c, Pe1d, Pe1e, Pe1f, Pe1g) 

2. Recognize the figures in the parenthesis 
(KEZL, IEZU, EZHL, IKGU, LGU, 
BIL) 

 
(Pe2a, Pe2b, Pe2c, Pe2d, Pe2e, Pe2f) 

3. Underline the right sentence: 

(Op4) 
a) Fig. 1 has equal perimeter with Fig. 2 
b) Fig. 1 has smaller perimeter than Fig. 2 
c) Fig. 1 has bigger perimeter than Fig. 2  

4.Peter combines 
Triangle 1 and 
Triangle 2 
making Figure 
A. Calculate the 
perimeter of 
Figure A. (Op6a) 
 

5. In the following figure the rectangle 
ABCD and the circle with centre A are 
given. Find the length of EB.  

      (Ve7) 

6. Themistoklis has a square field with side 
40m. He wants to construct a square 
swimming pool which is far from each side 
of the field 15m. Find the swimming pool 
perimeter.  (Ve9)   
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GESTALT CONFIGURATIONS IN GEOMETRY 
LEARNING 

Claudia Acuña 

Cinvestav-IPN, Mexico

ABSTRACT

The treatment of geometric diagrams requires the handling of the figural  
aspects of the drawing as much as the conceptual aspects contained in the 
figure1. In geometry we use the figural aspects of diagrams as symbols to  
prove or resolve problems.  When we interpret figural information, what  
we call  Gestalt  configurations  emerge:  auxiliary  figural  configurations,  
real or virtual, that give meaning and substance to an idea that facilitates  
the proof or solution to the problem.  In this work we give arguments to  
acknowledge  the  existence  of  these  resources,  identify  their  symbolic 
nature  and  consider  the  reasons  behind  their  existence,  sometimes 
ingrained, sometimes superficial.   

INTRODUCTION 

To conceive representation as “one thing in place of another, for someone” 
Pierce (1903) allows us to interpret it as a semiotic mediator between the 
abstract object of study and the cognizant individual.

In  this  sense  the  symbolic  aspect  in  terms  of  the  syntax  of  the 
representation must be considered as much as its semantics.  The semantics 
are grasped by the individual through meaningful problematic practices.

In  this  work  our  aim  is  to  identify  the  role  played  by  the  auxiliary 
constructions  related  to  the  use  of  diagrams,  which  we  call  Gestalt 
constructions and which are built by the users when they figural manipulate 
drawings in order to treat them as figures, Laborde and Caponni2, (1994). 

We hold that these configurations are profoundly ingrained in our students, 
that  they  are  intentional  but  often  unstable.  They  can  be  a  particularly 
valuable resource in heuristic tasks of figural investigation.  

THEORIC FRAMEWORK 

From the point of view of Duval (1995): 

1 In the sense of  Laborde and Caponni

2 The treatment of the graph as a drawing or figure, is based, firstly, on observing its properties as an 

actual pictorial representation or, secondly, considering the mathematical properties associated with the 

graphical representation.  
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One figure3 is an organization in marked contrast to the shine.  It emerges 
from the background through the presence of lines or points, governed by 
Gestalt law and perceptual indications p.142 

In  terms  of  the  Gestalt  relationship  the  figure  has  “form,  contour,  and 
organization,” while its preceding appears as an “amorphous and infinite 
continuity”, Guillaume (1979) p. 67.
Pictorial representations may be considered external and iconic, Mesquita 
(1998); they are also defined as inscriptions, Roth & McGinn (1998); or 
diagrams, Pyke (2003).  The unifying idea is that the graph is an external 
representation that is materialized through the use of pencil and paper, the 
computer or other means and is, therefore, available through these means, 
in contrast to mental representations which are not accessible, op cit.
Below  we  consider  the  graphic  representation  as  a  diagrammatic 
representation or  diagram that  preserves  the relationships  of  the objects 
involved.   Diagrams  from  the  viewpoint  of  sense  will  be  observed  in 
themselves and interpreted from the point of view of the reference between 
them. 
On the  other  hand,  diagrams  are  figural  concepts  that,  in  the  words  of 
Fischbein (1993) can be thought of as concepts and as objects: this duality 
emphasizes  the  different  interpretations  associated  with  graphic 
representations. 
Thinking  of  a  diagram  as  an  object  means  associating  specific  figural 
properties with it, such as position or form.  These considerations on what 
thinking  about  it  as  an  object  means,  in  Fischbein’s  way,  refer  to  a 
mathematical  object,  this is abstract. The dichotomy between object and 
concept  is  related  more  to  a  theory  need  to  include  non-formalized 
mathematical aspects, such as position or form, than to the mathematical 
objects in themselves.

For the purposes of this work we refer to the treatment of representations in 
geometry  based  on their  iconic  or  figural  properties  centered  on  visual 
image and to their external nature as embodied materially on paper or other 
support. 

The  nature  of  diagrams  in  geometry  learning  is  ruled  by  two  types  of 
properties as Laborde (2005), observes:

Diagrams in two-dimensional geometry play an ambiguous role: on one 
hand they refer to theoretical geometrical properties, while on the other, 
they offer  spatial-graphical  properties  that  can give rise to a student’s 
perceptual activity p. 159

The treatment given to the diagram as an object in geometry learning is 
closer  to  that  given  to  a  drawing  as  a  current  instance,  and  not  as  an 

3 The word “figure” in this quote has a meaning close to diagram, distinct from how we use it in the rest 
of the work.
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abstract mathematical object in the concept-object duality.  It takes students 
some  time,  in  fact,  to  incorporate  the  idea  that  drawn  objects 
(representations) have properties which are distinct from those of real life 
objects.

In terms of learning, Laborde op cit. warns:

The distinction of the two domains, the spatial-graphical domain and the 
geometrical one, allowed us to show that the intertwining of the spatial 
aspects of diagrams with the theoretical aspects of geometry is especially 
important at the beginning of learning geometry op. cit. p. 177. 

It is in the spatial-graphical domain where spatial and figural relations are 
developed  that  give  shape  to  the  thought  structures  that  are  developed 
around the Gestalt.   First,  as a relation between the background and the 
form and later, as resources in the explanation, construction or solution of 
problems, they give rise to Gestalt configurations.  

Studies related to visualization and, most recently, visual perception, have 
addressed  the  role  played by  Gestalt  relations  between background and 
form in the pictorial representation that accompanies the mathematics, and 
the importance of considering it on a certain type of perceptive perception, 
Duval (1995)
In  the  work  of  Nemirovsky and  Tierney (2001),  regarding  spaces  of 
representation, we observe a special interest in establishing the existence of 
distinct ways of interpreting the same space of representation based on its 
use and meaning relative to the objects represented. 
From the above we can say that the use of diagrams depends not only on 
what is represented in them, but also on the relations we can establish from 
them, including spatial information which includes Gestalt relations.

Gestalt configurations 

In the work of Dvora and Dreyfus (2004) we have unjustified assumptions 
based on diagrams in geometry due to students confusing a mathematical 
motive and a purely visual motive.  In addition, when problem solving they 
base themselves more on their beliefs about the topic in question than on 
the available propositions.  The authors find that diagrams affect students’ 
way  of  thinking  because,  among  other  things,  they  use  diagrams  as 
evidence.  

The Gestalt configurations dealt with here have no evidential connotation, 
they are, instead, auxiliary constructions that complete or give shape to an 
idea and have their origin in the need to solve problems which involve a 
diagram.
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Gestalt configurations are not related to all the possible pictorial tests that 
claim  to  find  a  solution  helped  by  the  drawing,  whether  the  lead  is 
promising or not.   

A  Gestalt-type  configuration,  as  well  as  the  intentionality  of  solution, 
should contain a reference to the relation between background and form, 
that is, Gestalt configuration “adjusts” to the general composition of the 
diagram.  In other words, Gestalt  configuration manifests as a cognitive 
resource to give substance to a thought and is distinguished by its figural 
relation between the background and the form of the diagram in question.   

The  symbolic  relations  of  a  Gestalt  configuration  are  determinant:  it  is 
dependent on them whether this configuration can be built or not.  By way 
of example, Acuña (2004), we have the case in which without the presence 
of a graphic reference the very existence of the geometric or graphic object 
is in doubt, as in the following cases:

Fig. 1 Point A is the only one with equal ordinate and smaller abscissa than 
P, in this plane

In the student’s answer to the question about the number of points that have 
an equal ordinate and smaller abscissa than the point (-2,3) in which he (or 
she) affirms:  1 on this plane, we can see that he is trapped by the actual 
representation since the picture offers only one unit mark on the abscissa 
axis.  The student does not consider alternative solutions other than that 
point located above the mark of the whole abscissa unit.  The absence of 
the mark combines with the idea that a point should have a whole abscissa 
unit.  This student was unable to build neither of a suitable configuration 
for the solution or a Gestalt configuration.  

In the following case,  Acuña (1997) we have (see Figure 2)  a question 
about whether the suggested points are on the drawn straight lines or not. 
If we look at the point (-2, 3) we see that the straight line proposed does not 
reach the position where a perceptive solution could be given, that is, one 
perceived “by eye”.  This fact makes the student doubtful and answers that 
if we lengthen the straight lines, the point is on it, otherwise it isn’t. 

Our student is unsure of the existence of the point in spite of knowing its 
coordinates, thus the Gestalt configuration cannot be built because of the 
absence of the graphic reference that gives it substance.  In this case, if the 
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straight line does not reach the indicated place, there is no security about its 
existence,  which  impedes  the  acceptance  of  the  relation  between  the 
straight line and the point.

Fig. 2 Problem of points on the straight lines 

Constructions with appropriate Gestalt configuration 

In relation to the construction and use of geometric figures, Maracci (2001) 
has  observed  that  students  insist  on  making  constructions  that  possess 
certain, from their point of view, appropriate aspect. 
This insistence is accompanied by the preference for the horizontal-vertical 
position, or the choice of graphs that appear to be, for example, a straight 
line Mavarech and Kramarsky, (1997) or a segment of a straight line with 
an slope equal to 1, Acuña (2001), as well as students’ penchant for using 
prototypes4  Hershkowitz (1989), or the use of the “best” examples from 
among one same category of possible cases, Mesquita (1998). 

This phenomenon can be explained by the students’ need to find a good 
orientation and familiar representation.  In other words, they prefer to build 
“appropriate”  configurations  in  general  and  Gestalt  configurations  in 
particular that give meaning to the actual figural relation.   

In  some  tasks  with  qualitative  instructions,  as  in  figure  3,  we  have 
identified a tendency to recognize and build graphs in a certain position and 
with a certain peculiarity, forming prototypes, Acuña (2001).   A large part 
of the students surveyed with the question for draw straight line with only 
points with positive abscissa, responded with a half-line that reaches the 
origin, with a slope of 1.  This answer was more frequent than any other, 
correct or incorrect, in high school students.  

4 We call prototypical figures those which correspond to a regular organization of contour, orientation and 

form;  prototype  figures  tend  to  respect  laws  of  enclosure  (closed  limits  are  preferably  perceived), 

favoring some directions (such as horizontal and vertical) and forms (that tend to be regular, simple, and 

symmetrical); the components of the figure (sides, angles for example) have approximate dimensions.
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5.  Draw a straight line where all the 
points have a positive abscissa, that 
is, where x > 0 is true for all points 
on the line.

Fig. 3 Answer to a qualitative-type construction task

The students’ answer presupposes that the straight line built does not cross 
to the other side of the vertical axis, as if it were a barrier, so that it will not 
take negative values for the abscissa.   
The non-ostensive nature of the straight line related to the infinite extension 
of its extremes contributes to the incorrect interpretation of the answer that, 
in  strictly  figural  terms,  has a  plausible  logic,  especially  since  it  is  not 
possible have a representation of a straight line, only parts of it.  
The  non-ostensive  aspect  on  the  infinite  extension  of  the  line  can  be 
accepted  theoretically  by  the  students,  but  the  impossibility  of  building 
theoretical straight lines leads them to accept the segments of a straight line 
as if they were straight lines themselves. 
In figure 4,  Acuña,  (2002) students  are asked to  draw the graph of  the 
straight line that would have an ordinate equal to the origin of the original 
straight line that appears on the left.

Original straight 
line 

Majority answer

Fig. 4  Gestalt configuration combining figure and form

The majority of our students drew the graph on the far right. Many of them 
had correctly recognized the ordinate of the origin in straight lines given 
earlier; nevertheless, here they choose to conserve the “triangular” image 
formed in both graphs, preferring to relate the two graphs with a similar 
Gestalt.   
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This type of answer is strongly conditioned by the situation of the exercise, 
in particular given that this perception is unstable, as we can see in other 
exercises.  
 In the following exercise, Sosa (2008) two high school students have been 
asked to build the height corresponding to the side marked with X in each 
case.  

Fig. 5  Exercises on height construction

In these two cases, we have the application of a Gestalt configuration to 
solve the problem of the construction of the height of the marked side.  In 
the answer on the left, the height is thought of as a conformation formed by 
the vertex of the obtuse angle, or what looks like it. The student also uses 
an auxiliary parallel line which we suppose was in the image the student 
recalled.

In the case of  the constructions on the right  (see figure 3)  we have an 
auxiliary construction that includes the line marked with X but where this 
is  a  part  of  another  auxiliary  construction  that  presents  a  right-angle 
triangle where we observe some of the characteristics relevant to height, 
but  its  construction  is  unknown.   The  marked  line  is  included  in  his 
construction, but its role in the construction is reinterpreted and he does 
everything he can to make it look good.   
In the following case  we ask students  to  mark the straight  lines with a 
different slope to that of the one given. 

The formation of this configuration not only appears when the definitions 
of  the  geometric  objects  are  unknown or  is  recalled  inexactly,  but  also 
when globalizing an idea of position, as in the following  example. In the 
case of figure 6 and 7, we ask high school students to choose from the 
lower graphs that which have a different slope to the one proposed initially. 

The results allow us to see their idea of a slope in this exercise.  Despite 
having correctly  compared,  based  on perception,  the slope  of  the  given 
lines,  here  they  conceive  it  as  the  Gestalt  configuration  formed  by  the 
position of the straight line relative to the axes, that is, the line is positioned 
from left to right and from up to down.    
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Fig. 6 Straight line with given slope

   

   

Fig. 7 Gestalt configuration on a slope

The 19.3 % of our sample only marked the straight line that is positioned 
from left to right, leaving aside the idea of slope that they used before. 

The preference towards a “good” Gestalt appears to impose itself in tasks 
of  identification  of  figural  properties.   This  recourse  may  signify  an 
advance or a backward step for solution strategies. What does appear to be 
constant is the use of this type of configuration to test solutions to problems 
with diagrams.    

These  configurations  may  disappear  quickly  with  better  instruction,  but 
they also have aspects of profound rooted as in the case of Moschkovich’s 
(1999) investigation, regarding the use of the y-intercept.  She finds that 
when observing the graph of  a  straight  line students  may expect  the x-
intercept to appear in the equation because on the graph it is a salient as y-
intercept  although  this  is  not  necessarily  convenient  in  the  case  of  the 
equation  y = m x + b however, they are important for the equation that 
considers two points on the straight line. The appeal of the x-intercept is so 
big than could think it as a preconception; in her investigation she affirms 
that: 

The use of x-intercept is not merely the result of choosing or emphasizing 
the  form  y =  m x +  b  over  other  forms but  is  instead an instance  of 
students making sense of the connection between the two representations 
and reflection on the conceptual complexity of this domain p. 182 

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 713



We believe from the above that it is possible to suppose the existence of 
figural resources that take the form of Gestalt configurations that respond 
on one hand, to the necessity of giving substance to figural ideas, and on 
the  other,  that  these  configurations  are  ruled  by  the  relations  between 
background  and  form  on  which  rests  the  figural  representation  of 
mathematical and, more concretely, geometric diagrams. 

CONCLUSIONS

A Gestalt configuration is a mental or real construction utilized by the user 
to resolve, complete or give meaning to a given problem through a diagram 
that can be treated as a drawing or figure.  

Gestalt configurations have a personal character, but on occasions reflect 
epistemological obstacles that are supported by the non-ostensive nature of 
the properties of the objects represented by the diagrams, as in the case of 
the infinite character of some of these representations.

The formation of some Gestalt configurations is characterized by having an 
ephemeral life, although there are some that persist; as they are personal 
productions of the user.   In general,  they are considered productive and 
reliable  for  confronting  familiar  graphic  settings  towards  resolving 
problems that include diagrams.    

In all cases, the construction of the Gestalt configurations is intentional in 
spite of the inability to ensure its pertinence. Gestalt configurations do not 
only appear as visual traps but as a diversity of resources to solve figural 
problems or proving.
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INVESTIGATING COMPARISON BETWEEN SURFACES

Paola Vighi

Mathematics Department – University of Parma – Italy

This  work  is  based  on  a  geometrical  problem  concerning  comparison  between  
surfaces, presented to 58 pupils 10-11 years old. We present a worksheet aimed at  
revealing  children’s  reasoning  about  visualisation  in  geometry.  We  compare  the  
ways in which various problems are tackled by two different  groups of  students:  
Group  E  (experimental)  and  Group  T  (traditional).  We  conclude  with  some  
observations about teaching geometry and suggestions for its improvement.

INTRODUCTION

During a lecture to future teachers about fractions, I observed as they were analysing 
suitable  geometric  figures,  drawn  using  computer  graphics.  I  realised  that  these 
drawings could be useful for investigating geometrical learning. My attention was 
particularly  attracted  by  different  representations  of  the  half  of  a  rectangle.  I 
mentioned my idea to a group of experienced Primary School teachers, and one of 
them, when she saw figures A, B and C (Figure 1), said: “If the pupils have already 
worked with fractions, they will certainly use and recognize the concept of half.” As 
in  my  experience  this  conclusion  is  rash  and  not  entirely  obvious,  I  decided  to 
investigate it. Working with the teachers, we prepared a worksheet based on Figures 
A, B, and C and on a fourth Figure D, expressly created. 

The aim of the research is twofold: to investigate the use of the concept of ‘half,’ and 
chiefly  to study geometrical  thinking observing pupils  behaviours,  with particular 
reference  to  registers  of  representation  (Duval,  1998-2006),  especially  the  figural 
register.

THEORETICAL FRAMEWORK

The  concept  of  half and  related  notations  are  present  in  five  and  six-year-old 
children  (Brizuela,  2006).  At  this  age,  children  use  different  semiotic 
representations  (Duval,  1995),  but  it  is  difficult  for  them  recognise  a  half  in 
different representations (Sbaragli, 2008). According to Duval, the passage from a 
semiotic  representation  to  a  different representation  is  fundamental  for  a 
conceptual learning of objects. In particular, he distinguishes two possible kinds of 
transformation  of  representation:  conversion (from a  semiotic  representation  to 
another, in a different register) and treatment (from one semiotic representation to 
another, in the same register). The half of a geometrical figure is usually presented 
to  children  when  we  introduce  fractions,  as  one  of  the  first  examples. 
Subsequently, teachers move on to writing fractions and to calculating with them, 
moving from conversions to treatments.

Traditionally in Primary School we use geometrical figures as a suitable tool for 
teaching  and  learning  geometry.  Figures  involve  a  fundamental  action  for  the 

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 716



pupil:  looking.  The  didactical  contract  (Brousseau,  1986)  based  on  showing 
requires that 

“the  pupil  understands  what  the  teacher  expects  that  s/he  will  see,  with  the  false 
illusion that both must see the same” (Chamorro, 2006).

If both parties do not see the same, the contract is broken and learning does not take 
place. So we need to … “teach to see”. In geometry, a first problem is created by 
perception,  which may  hinder  the  ways  of  seeing  figures.  In  other  words,  the 
perceptive  indicators  may  be  misleading  for  the  qualitative evaluation  of  the 
extension  of  surface  or  of  other  magnitudes.  Gestalt theory  deals  with  laws  of 
organisation of visual data that lead us to see certain figures rather than others in a 
picture.

More recent researches show that

“…it is the task that determines the relation with figures. The way of seeing a figure 
depends on the activity in which it is involved.” (Duval, 2006).

Duval (2006) analyses and classifies the different ways of seeing a figure depending 
on  the  geometrical  activities  presented  to  pupils.  He  distinguishes  four  ways  of 
visualising a figure: by a botanist, a surveyor, a builder or an inventor. Botanists and 
surveyors  have  ‘iconic  visualisation’,  and  perceive  the  resemblance  between  a 
drawing and the shape of an object. Builders and inventors on the other hand have 
‘non-iconic  visualisation’,  and their  perception  is  based  on the  deconstruction  of  
shapes.  Duval analyses the introduction of supplementary outlines, which he thinks 
fundamental  in ‘non-iconic visualisation’,  in particular  he discusses  re-organising 
outlines which allow to reorganise a figure and thus to reveal in it parts and shapes 
that are not immediately recognizable. .

He also discusses  the  méréological  decomposition1 of shapes,  a  division of  the 
whole  into  parts  which  can  be  juxtaposed  or  superimposed,  with  the  aim  of 
reconstructing  another  figure,  often  very  different  to  the  starting  figure.  This 
allows the detection of geometrical properties needed to solve a problem, using an 
exploration  purely  visual  of  the  figure  initial.  He  distinguishes  three  kinds  of 
méréological decomposition: material (with cutting and rebuilding as in a jigsaw 
puzzle), graphic (using reorganising outlines) and by looking (with the eyes, not 
“mentally”).  We tackled  the  problem of  “which  is  ‘visual’  in  geometry?” in  a 
research paper (Marchini et al., 2009) where we analysed in-dept the literature on 
this argument. 

In  Italian  Primary  School,  comparison  between  surfaces is  often  reduced  to 
evaluating areas (measurements of extension of surfaces) and to comparing numbers. 
Teachers tend to determine equivalence of the magnitude of two objects by means of 
measurement. But “transferring the comparison to the numerical field, we are in fact 
working with numerical  order  which doesn’t  consider  the criterion of  quantity  of 
1  In mathematical logic, mereology is a theory dealing with parts and their respective whole. The 

term was coined by Łésniewski in 1927, from the Greek word μέρος (méros, "part").
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magnitude” (Chamorro, 2001). An epistemological slide from geometry to arithmetic 
occurs.  The  comparison  between  surfaces  and,  in  particular,  the  “equivalence  of 
magnitude” is a fundamental but difficult concept, which requires specific teaching. 
In previous research we wrote:

“We did not predict that determining shapes of the same area would be difficult, …. But 
in fact there were cases where pupils failed to recognise that two congruent rectangles, 
set at a different way on the sheet of paper, had the same extension.”  (Marchetti et al., 
2005).

The  comparison  between  surfaces  is  also  influenced  by  the  relationship  between 
shape and surface:  when we  present  a  surface,  we  present  something  that  has  a 
specific shape.  If the shape changes,  a younger child might think that the surface 
changes  too.  Research  shows  clearly  that  pupils  under  12  have  difficulty  in 
understanding that the shape and the surface of a figure are different (Bang Vinh & 
Lunzer E., 1965).

RESEARCH METHODOLOGY

We presented the worksheet at the end of the last year of Primary School, to three 
classes of students 10-11 years old, which had followed two different approaches to 
geometry. One class had already taken part in an experimental project and the other 
two  classes  had  received  only  traditional  teaching.  We  named  the  first  group 
‘Experimental’ (Group E) and the second group ‘Traditional’ (Group T). Group E 
consisted of 26 pupils; they had followed a Mathematics Laboratory Project (MLP)2, 
during the last three years of Primary School. It focussed on activities that started 
from a practical problem, such as fencing in a field or tiling a room, and led to the 
introduction of specific instruments by the teacher as the children perceived the need 
for them. The early activities involved concrete materials and children using their 
hands, and geometric instruments and theoretical concepts were introduced in later 
activities. So Group E did not follow traditional curricular teaching; we presented 
new activities that were different in terms of both methodology and content. Group T 
consisted  of  32  students  from  two  classes  which  had  followed  the  traditional 
mathematics  curriculum.  Both  groups  had  previously  studied  and  worked  with 
fractions and areas.  For Group E, however,  the project  had opted to present  area 
before perimeter, which is unusual in Italian schools.

Pupils’  behaviours  were  observed  as  follows:  when  the  teacher  presented  the 
worksheet,  s/he explained that  not  was possible  to use a  rubber,  but  if  necessary 
children  could  write  their  notes  and  opinions  on  another  sheet  of  paper.  I  then 
analysed the protocols.

2 The project was carried out by two researchers, D. Medici and P. Vighi, and two teacher-researchers, P. Marchetti and 
E. Zaccomer.
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THE TASK AND ITS ANALYSIS

In the following pages we present and discuss the worksheet. 

A pizza-maker with a lively imagination displays these slices of pizza. 

All  the  slices  have  one  part  with  only  tomato  (dark)  and  one  part  with  only 
mozzarella (light).

One child wants a slice of pizza with a lot of tomato.

Which slice do you think he or she should choose? Why? ..........................................

Does the slice of pizza below have more mozzarella or more tomato? .......................

Why? ............................................................................................................................

This  activity  on geometrical  figures  in  the  first  part  lies  on the first  level  of  van 
Hiele’s  theory,  in  the  final  part  it  lies  on  the  second  level,  which  involves  the 
possibility  of  seeing  inside  geometrical  figures  and  seeing  and/or  making  a 
subdivision into parts (van Hiele, 1986). In the paradigmatic perspective introduced 
by Houdement and Kusniak (2003), the activity is situated in Geometry I.

Notice that the passage from A to B or C requires ‘treatments’ inside the register of 
visual representations. The first question is deliberately ambiguous; the form of the 
question could lead the child to opt for only one of the slices and, consequently, give 
a wrong answer. In other words,  the question could lead the child to exclude the 
equivalence of surfaces. The second part of the task presents an unusual geometrical 
problem. The slice is divided into three parts and the comparison concerns only two 
quantities of food (two surfaces). There is a different subdivision in half of the same 
rectangle as before. The question is formulated differently from the first: the problem 

Figure 1: the worksheet
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is the comparison between tomato and mozzarella.  Using a supplementary outline 
helps to find the answer. The main information is in the drawings: rectangles A, B, C 
and D are congruent (8 cm  ×  5.3 cm) and, in particular, in A and B we used the 
middle point of a side, without specifying this; in other words, we gave implicit data. 
Figures play an essential role: they are shown against a grey background, with the 
aim of distinguishing between the whole slice and its parts.

The context of the problem is intended to focus attention on surfaces. The figures in 
the first part, rectangles and triangles, are familiar; the pupils know the formulas for the 
calculation of their areas. The last ‘slice’ is made up of a dark triangle, representing 
tomato, and two other white triangles, not contiguous, representing just mozzarella. It 
is an unusual figure which does not appear in textbooks (it may not in fact appear in 
pizza shops either),  but if  the sheet  of paper is rotated,  it  probably becomes more 
familiar as a drawing related to the formula of area of a triangle. For Figure D too, 
children need to use the concept of half, or they need to “see” congruent parts, or draw 
supplementary outlines, or calculate areas and verify their equality. 

The analysis of A and B by  méréological decomposition is simpler than for C. In 
effect  there  is  a  difference  in  the  geometry  of  transformations:  in  A and B it  is 
sufficient to translate some pieces, while in C rotation is also required. As we saw, D 
implies cutting the figure and reconstructing congruent parts. We present slice D to 
investigate pupils’ strategies.  We want to establish whether children use the same 
methods  for  answering  both  questions,  or  if  D  encourages  them to  try  different 
methods. We also want to observe whether solving the second problem leads pupils 
to rethink their answers to the first.

RESEARCH RESULTS

The activity is presented in a geometrical context, which often seems to imply the use of 
specific geometrical tools. In many of the protocols the shift from the geometric register 
to the numerical register of fractions does not occur: ‘conversion’ between the registers 
does not take place.

Only a few answers to the first question (12% in Group E, 6% in Group T) use the 
concept of “half”: “Figures are divided in half”, or “Half the space is filled with 
tomato”. The question draws pupils’ attention only to the black shapes, or tomato. 
In other words, children focus on and compare particular parts, rather than looking 
at the slices globally. It is not by chance that the few answers which are based on 
“half”  make  recourse  to  the  relation  part-whole  (Hart,  1985):  “All  slices  are 
perfectly divided in the middle and the whole is equal for all figures”. Notice that 
the children use words that are usual in speaking about fractions, not the symbol 
1/2. In some cases the concept of half is questionable and ‘relative’: “I choose 
pizza C because tomato occupies the “biggest half.” The relation shape-surface also 
emerges: “Even if the pizzas are divided into different shapes, it is still half a slice 
and the slices are equal”.
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The “equal extension” of tomato surfaces in A, B, C was recognised by only 6 pupils in 
Group E and 4 in Group T. 

We now analyse different procedures observed for the first part of worksheet.

- by perception: children choose slice C because the tomato appears bigger (or “It 
looks like a piece of pizza”) (30% in E and 37% in T). In some cases, the choice is 
based on exclusion, which may be due to the question: some children verify that A 
and B have equal quantities of tomato, and they conclude that C must be bigger, 
without checking. Two pupils choose A because “it is larger,” taking account of 
one dimension only.

- by subdivision: here we notice very different behaviours according to the teaching 
methods  adopted.  In  Group T,  only  1  pupil  uses  méréological  decomposition, 
while in Group E 6 do so. Pupils divide figures B and C by drawing (graphic 
decomposition) or imagining (decomposition by looking) a continuation of the 
horizontal line present in slice A which divides the white and black parts. They 
observe that it is possible to shift some black pieces of B or C in order to obtain A. 
It is significant that some of them write “If I cut in half …”, although they did not 
see the half in Figures A, B and C.

- by calculation of area: only 4 pupils in Group E and 3 in Group T calculate 21.20 
cm2 as measure of three surfaces covered by tomato. There is also a problem of 
approximation: for figure B, in calculating 5.3 : 2 they stop at the first digit after 
the decimal point obtaining 2.6 and 2.6 ×  8 make 20.8. Slice B thus seems to have 
less tomato.

- by  calculation  of  perimeter:  6  children  in  Group  E  use  this  method  (maybe 
because perimeter was most recently studied) and 5 in Group T. Their procedures 
are based on measuring the sides of the black figures and their addition: in this 
way  C  appears  biggest.  This  is  a  manifestation  of  perimeter-area  conflict. 
(Chamorro, 2002), (Marchetti et al. 2005).

- by flooring with squares: based on reproduction of figures on squared paper, often 
without respect for shapes and measurements, or based on the superimposition of 
a squared grid, often not regular. Answers are based on counting the number of 
squares.

In the second part of the worksheet, we recorded 58% correct answers in Group E, 
and 34% in Group T.  Obviously the use of  half in the first  part  of the task is a 
successful strategy, as it is for the second part.

In Group E, previous methodological decisions and their experience of manipulation 
led children to tackle the problem in different ways. Some children took scissors, cut 
the pieces and superimposed two white pieces on the black. They still worked with 
real and not geometrical objects. Their conclusions may be “They are equal,” or not, 
because  there  is  a  problem of  approximation:  “They  differ  by  a  small  amount”. 
Recourse to  méréological decomposition promotes fast  and correct answers, based 
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simply on the drawing of a horizontal segment, and the height of the dark triangle. An 
interesting observation is that a few pupils use the expressions “triangle” or “height 
of triangle” in their explanations; they write: “I connected the vertex of triangle with 
the opposite side …” or “I drew a horizontal line …”. 

Some pupils make a rough estimate, and make recourse only to perception (26% in 
Group E, 40 % in Group T). They support their answers as follows: “I can see it,” 
“The part with tomato is slightly bigger.” In some answers the decision is based on 
the number of pieces, not on areas: “Mozzarella, because two pieces occupy more 
space than one.” 

Both groups make little use of calculation. One girl wrote: 5.3 ×  8 = 42.4 and 42.4 : 2 
= 21.2 tomato piece; 5.3 ×  5 = 26.5 and 26.5 : 2 = 13.25; 5.3 ×  3 = 15.9 and 15.9 : 2 
= 7.95; so 13.25 + 7.95 = 21.20 mozzarella piece. This is an example of rigorous 
application of rules, without geometrical reasoning.

Another boy uses ‘pre-algebraic’ notation and reaches an incorrect conclusion based 
only  on  intuition  or  perception.  He  tries  to 
explain (Figure 2) that, starting from the area of 
the rectangle, we can subtract the areas of two 
white triangles and we obtain the area of the big 
triangle (black). In the second part, he observes 
that the sum of the areas of the white triangles is 
bigger than the area of the ‘big triangle’, but he 
doesn’t explain why.

Some pupils measure two or all sides and multiply them: the idea of multiplication in 
area calculation is strong, which may be a result of the didactical contract, but there is 
no understanding of its meaning. We also find mixed procedures: (8 ×  5.3) – (8 + 6 + 
7) = 42.4–21 = 21.4  area tomato, 42.4–21.4 = 21.0 area mozzarella; the idea is to 
subtract from the rectangle area the dark triangle area, but the formula for finding the 
area of a triangle seems  not to be known and the pupil calculates the perimeter. 
Nevertheless one child has a good idea: to obtain the white area as complementary to 
the black in the rectangle. Only this one boy used this strategy: in fact in school we 
usually present exercises involving only one shape, and the possibility of calculating 
an area by subtraction is not introduced.
The solution  based  on  méréological  decomposition appears  the  best,  and  is  a 
successful strategy especially in Group E. We presume that the previous work with 
Tangram and a different methodological approach helps in the case of Figure D and 
its parts. Reasoning is based on the use of a supplementary outline (Figure 3).

Figure 2: pre-algebraic notation

Figure 3: méréological decomposition Figure 4: flooring with squares
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The idea of measuring with squared paper also appears. In particular, in the protocol 
reproduced in Figure 4 there is evidence of a lack of understanding: the child counts 
both  squares  and pieces  of  squares  and he  concludes  that  the  mozzarella  area  is 
bigger. In the case of surface measurement, schools usually make use of subdivision 
with squares; there is often no explanation of this method.  Moreover it is not suitable 
for figures with sides that are neither ‘horizontal’ nor ‘vertical’.

Perimeter is used a lot by Group T (18%), but only two pupils use it in Group E 
(0,07%). It seems that Figure D, which is unusual in traditional teaching, causes the 
“perimeter-area conflict” and reveals this hidden misconception. 

GENERAL CONCLUSIONS

In both groups there were pupils who made no use of geometrical reasoning, but only 
their eyes. The pizza problem is in fact unusual in that it requires observation of more 
than one shape and no explicit calculation of its perimeter or area. Often in real life 
we compare two quantities and we choose the bigger, using common sense rather 
than mathematics. So one child wrote: “From shapes A, B, and C, I choose C, since it 
looks  like  a  slice.  He was  maybe thinking of  the  shape  of  a  slice  of  cake.  One 
significant  answer  came  from a  child  imagining  a  real  pizza,  who  observed that 
comparison is impossible, because there is no information about the thickness of the 
tomato  and  mozzarella.  The  analysis  of  answers  confirmed  the  gap  between 
‘scholastic’  and  ‘real’  problems  (Zan,  1998).  In  other  words,  the  same  problem 
presented in the school or a snack bar may have different solutions. Canapés, in fact, 
are triangular, obtained by cutting a square along the diagonal, and it could well be 
that we think we are eating more than if the square of bread were cut in other way.

One week later, the teacher of Group E re-presented the worksheet to her class and 
encouraged  a  discussion  of  pupils’  own  solutions.  Many  quickly  recognized  the 
concept  of  half  as  a  key  to  the  problem and  modified  their  answers.  But  some 
children wrote an explanation clearly without conviction. As we wrote previously, in 
our experience the concept of half does not seem to have been acquired by pupils 10-
11 years old. In our opinion, the concept of half needs to be constructed gradually and 
it is important to work on it with regularity so that it can successfully prepare the 
ground for introducing fractions.

We also notice that children often use whole numbers as measures of triangle sides: 
unfortunately  in  Italy  the  problem of  approximation  is  neglected.  In  some  cases 
pupils  understand  that  different  numerical  results,  can  be  given  simply  by 
approximated  measurements,  but  in  other  cases  the  children  are  closely  tied  to 
numerical results, even where this conflicts with common sense.

The global analysis of protocols reveals the influence of different teaching methods. 
Comparison between the protocols of two groups shows clearly the existence of two 
different behaviours, closely connected to the “social norm” established in classroom 
(Yackel,  Cobb,  1996)  according  to  the  “didactical  contract”.  In  Group  T,  the 
necessity of following the rules leads to measurement by ruler and the calculation of 
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perimeters and areas. But in Group E, familiarity with manipulation, scissors and so 
on encourages the use of hands (and the head) (Chamorro, 2008). We observe the 
presence of an explicit, real geometrical aptitude in Group E, which was probably a 
result of the MLP. In Group T, traditional geometry and its formulas are prevalent. 
We surmise that the better results in Group E are closely connected with didactic 
choices.  In  other  words,  the fact  that  Group E children worked as  ‘builders’  and 
‘inventors’  supports  the  use  of  a  ‘supplementary  outline,’  which  for  Duval  is 
fundamental in seeing figures; our experiment confirms his  theory of different kinds 
of visualisation in geometry. Future research will feature an activity based on the 
same figures but focussing on ‘dimensional deconstruction,’ defined by Duval as a 
‘cognitive revolution’ for visualisation.

Another  important  suggestion  arises  from pupil’s  approach to  the  task.  Protocol 
analysis shows that children who use the half or decomposition in shapes A, B and C, 
use the same concept to investigate D, with the same tools. Vice versa, those who 
‘found’ the half in D, maybe by calculating the area, do not go back to modify their 
answer to the first part of the task. This points to another critical aspect of traditional 
teaching, not only in the field of mathematics: exercise books always have be tidy, 
with no rough work or  scribbling,  and children are  not  encouraged to  rethink or 
reflect  on work or activities carried out previously. But often sketches and rough 
drafts can in fact help develop reasoning. We also feel that there should be more 
encouragement to write up reasoning in the classroom.
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THE EFFECTS OF THE CONCEPT OF SYMMETRY ON 
LEARNING GEOMETRY AT FRENCH SECONDARY SCHOOL 

Caroline Bulf 

University of Paris Diderot, Laboratoire André Revuz, France

This paper relates a part of a bigger research from my Phd (Bulf, 2008) about the 
symmetry’s effects on conceptualization of new mathematical concept. We focus here  
on the results from students’ productions at two different levels at French secondary  
school, with students who are 12-13 years old and 14-15 y.o. We find out different  
figural treatments according to the transformation at stake. The results work out the  
concept of symmetry makes students confused with the transformations of the plan at  
the  beginning  of  secondary  school  whereas  students  seem  more  familiar  with 
metrical properties relative to the symmetry and develop mathematical reasoning at 
the end of secondary school. 

Key  word:  secondary  school,  geometry,  transformations  of  the  plan,  symmetry,  
Geometrical Working Space, conceptualization.

INTRODUCTION 

The constructivist  wave suggests that a new knowledge is built  from the old one. 
According to the French curricula (1),  the symmetry (reflection through a line) is 
taught since primary school (through folding and paving), and more deeply during 
the  first  year  of  the  secondary  school  (students  are  11-12  years  old).  Next,  the 
rotational symmetry (reflection through a point) is taught during the second year of 
the  secondary  school;  the  translation  is  taught  during  the  third  year  and  finally 
rotation is taught during the last  year of the secondary school (students are 14-15 
y.o.). One of the specificity of the French curricula is to teach the symmetry as a 
transformation of the plan even if the term “transformation” is mentioned only at the 
end  of  secondary  school.  Others  countries  (Italy  as  for  instance)  deal  with 
transformations  of  the  plan  in  the frame of  the  analytic  geometry  at  high  school 
(students are older than 15 y.o). Then, in this French context, we suppose the concept 
of symmetry takes part into the learning of the new transformations of the plan. The 
question is  what are the effects of the symmetry on this learning process?  This 
paper is the rest of our research, already introduced in CERME 5 (Bulf, 2007).

We do not need to argue that symmetry is part of our “real world” but it is a scientific 
concept too. Bachelard (1934) points out that “nothing is done, all is building”, he 
adds the notion of obstacles “to set down the problem of scientific knowledge”. He 
describes different kind of obstacles: the obstacle of “the excessive use of familiar 
images”,  or  the  obstacle  of  “common  meaning”  and  “social  representations”. 
Nevertheless,  we  can  not  ignore  the  “real  world”  may  be  a  help  for  empirical 
reasoning. As far as our work is concerned, we wonder if the concept of symmetry 
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may  be  an  “obstacle”  or  a  “help”  into  the  learning  process  of  the  new 
transformations  of  the  plan  at  secondary  school. Several  French  authors  have 
already  pointed  out  some  resistant  misunderstandings  linked  with  the  concept  of 
symmetry (Grenier & Laborde, 1988) (Grenier, 1990) (Lima, 2006) or linked with the 
others  transformations  of  the  plan,  and  in  particular  deal  with  the  dialectic 
global/punctual (Bkouche, 1992) (Jahn, 1998). 

THEORETICAL FRAMEWORK AND RESEARCH QUESTIONS 

Our research focuses on the process of conceptualization during the learning of the 
transformations  of  the  plan.  The  Vergnaud’s  theory  (Vergnaud,  1991),  “the 
conceptual field theory”, analyses the human component of a concept in action. We 
refer  to  this  framework  in  order  to  analyse  the  students  who solve  mathematical 
problem.  We  focus  on  the  adaptation  of  the  “operational  invariants” which  are 
actually  defined  by  the  concept-in-action  (“relevant  or  irrelevant  notion  naturally 
involved in the mathematics at stake”) and theorem-in-action (“proposition assumed 
right  or  wrong,  used instinctively  in the mathematics  at  stake”).  The set  of  these 
invariants makes the schemes (notion inspired by Piaget) operate. A scheme is the 
“invariant organization of behaviour for  a class of given situation.  The scheme is 
acting as a whole: it is a functional and dynamical whole, a kind of module finalized 
by the subject’s intention and organized by the way used to reach his goal”. The 
“signifiers” s (according to Pressmeg’s translation of Saussure’s meaning (Presmeg, 
2006)  is  the set  of  representations  of  the concept,  its  properties,  and its  ways  of 
treatment  (language,  signs,  diagrams,  etc.).  According  to  Vergnaud,  learning  is 
defined as the adaptation of the schemes from students in a situation of reference. 

In  order  to  complete  the  analysis  of  students’  activities  through  geometrical 
problems,  we  refer  to  the  Houdement  and  Kuzniak’s  theoretical  framework  of 
Paradigm of Geometry I and Geometry II, and the notion of  Geometrical Working 
Space (Houdement  & Kuzniak,  2006).  Geometry  I  (GI)  is  the  naive  and  natural 
geometry  and  its  validity  is  the  real  and  sensible  world.  The  deduction  operates 
mainly  on  material  objects  through  perception  and  experimentation.  Geometry  II 
(GII) is the natural and axiomatic geometry, and its validity operates on an axiomatic 
system (Euclid).  This  geometry  is  modelling  reality.  The  notion  of  Geometrical 
Working Space (GWS) is the study of the environment, organized on a suitable way to 
articulate  these  three  components:  the  real  and  local  space,  the  artefacts  (as  for 
instance geometrical tools),  and the theoretical references (organized on a model). 
This GWS is used by people who organise it into different aims: the reference GWS is 
seen as  the institutional  GWS  from the community  of  mathematicians,  the  idoine 
GWS is the efficient one in order to reach a definite goal and the personal GWS is the 
one built with its own knowledge and personal experiments. 

Then the main research question is: How does the concept of symmetry set up the 
organization and the inferences between the operational invariants relatives to 
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the others transformations of the plan into the student’s  personal GWS?  And 
how does this personal GWS evolute during secondary school?

METHODOLOGY

We propose a common test to students at two different levels: at the second year, 
after the teaching of the reflection through a point and, at the fourth year, after the 
teaching of the rotation. The students are 12-13 y.o. and 14-15 y.o. and have the same 
mathematics’  teacher.  We  chose  the  situation  of  recognition  of  transformations 
because it is a usual task all along French secondary school. We define two different 
tasks from a same configuration with triangles but with different kind of graphical 
support. These tasks are given to students at two different times. The first task (Fig. 
1) suggests a “Global Perception” (we will note GP) because triangles are indicated 
as a whole with numbers and the transformations are indicated with arrows. This does 
not  mean the students  are  only  involved on a  global  perception;  they  may  use  a 
punctual perception too. The terms of the problem are: In each fallow case, indicate 
which reflection(s),  translation(s),  rotation(s)  transform:  a)  12 b)  23 and c)  
14. Justify yours answers. If you add marks on the figure, please do not rub out.  
The last question  c) is only given to the students from the last year but we do not 
analysis  the  results  because  we  are  devoted  to  the  case  with  reflection(s)  and 
rotation(s). Furthermore, it  is only indicated  which reflection(s)  (and not the other 
transformations) with the students from second year. 

Fig 1: “The triangle situation” in the case called “Global Perception” (GP).

The second task, given one week later, is the same as previously but the terms of the 
problem suggest a “Punctual Perception” (we will note PP) to the students (Fig. 2). 
The configuration is given with a squaring and the triangles’ tops are called by letters 
on the pattern and in the terms of the problem (ABC in EDC). 
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Fig 2: “The triangle situation” in the case called “punctual perception”.

These tasks are quite  easy for  these students  (they have to recognize a reflection 
through a point or a rotation of 180° at the question  a) and a reflection through an 
axis at the question b)). Different didactical variables are convened and then different 
students’ strategies are implied in both tasks. In particular, the graphical support is 
different  in  both  case,  in  the  GP one,  students’  adaptations  are  wider:  they  may 
involve arguments based on superimposition (folding or half-turn) or build strategies 
based  on  metrics’  arguments  (Euclidian  Affine  Geometry)  with  measurement  or 
perception.  We suppose these latter  strategies (with metrical arguments)  are more 
effective  in  the  task  PP  since  there  is  a  squaring  and  figures  are  nominated. 
Mathematical properties are not given as hypothesis in the term of the problems, so 
different  types of metrical  properties  are acceptable (as  for  instance “AC=CE” or 
“AC and CE are almost equals” or even “AC is not equal to CE”) but it is assumed a 
transformation  has  to  be  recognized.  Moreover,  the  figural  position  is  actually  a 
didactical  variable  to  consider  and  we  should  consider  intermediate  task  (as  for 
instance, without common point, etc.) in order to consolidate the results already got 
here. However, considering that, we show that students’ behaviour changes according 
to the perception suggested by the task (as expected) but the adaptations imply a 
different  way  of  figural  treatment  according  to  the  transformation  at  stake  and 
according to the students’ grade. The aim of this paper is describe the differences 
between transformations and the influence from the concept of symmetry on these 
adaptations at these both levels at secondary school.

RESULTS AND DISCUSSION

Student’s category according to stability of student’s achievement 

We collected 29x2=58 productions from students who are 14-15 y.o. and 26x2=52 
productions from students who are 12-13 y.o. We classified students’ productions 
according to the stability of their performance on both tasks, i.e. if student proposes a 
correct answer in the task GP and next if he changes or not his answer in the task 
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called PP. We will write RIGHT (R) or WRONG (W) the student’s finale issue on 
these  both  tasks.  Then,  different  profiles  are  exhibited  according to  the student’s 
achievement at the question a) (the correct transformation is the reflection through a 
point - or a rotation of 180°) and at the question b) (the correct transformation is a 
reflection through an axis). Finally, the main student’s profiles are presented on the 
table 3 and table 4, and count at least two students.

Recognition  of  the 
reflection  through  a 
point (question a)

Recognition  of  the 
reflection  through  an 
axis (question b)

Number  of 
students

Indicative 
percentage  of 
pupils

%GP PP GP PP

R R R R 16 ≈ 55 

W R W R 2 6,9

R R W W 4 13,8

R W R R 4 13,8

At least one WRONG 10 ≈ 34,5

Tab. 3: Student’s profile from the last year of secondary school (14-15 y.o) depending 
on whether student is successful.

Recognition  of  the 
reflection  through  a 
point (question a.)

Recognition  of  the 
reflection  through  an 
axis (question b.)

Number  of 
students

Indicative 
percentage 

%
GP PP GP PP

R R R R 9 ≈ 34,7 

R R W W 3 11,6

W W W W 3 11,6

R W W W 4 15,4

W R

R R R W 3 11,6

W R

At least one WRONG 13 ≈ 50

Tab.  4:  Student’s  profile  from  the  second  year  of  secondary  school  (12-13  y.o.) 
depending on whether student is successful.

According to these results, only 34,7 % students from the second year recognize both 
transformations with successful, whatever the perception suggested by the task; and 
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only 55 % students among students from the last year of secondary school recognize 
both transformations with successful, whatever the perception suggested by the task. 

The  students’  profiles  from  the  second  year  are  more  fragmented  than  the 
students’ones from the last year. Therefore, we suppose the student’s  Geometrical 
Working Space (GWS) from the last year is more stabilized. What we need now is to 
determine  what  did  each  profile  (especially  what  mistakes)  and  what  kind  of 
adaptations they made according to the perception and the transformation at stake. 

Local analysis of the Geometrical Working Space through the figural treatment 
according to Duval’s meaning

We analyse the GWS through its organization between the real space (marks on sheet 
of paper), the objects of reference from a mathematical model (Euclidian one), and 
the artefacts (tools,  schemes).  Inspired by Duval (2005),  we focus on the way of 
treatment of the figure in order to describe these links into the GWS. Duval defines 
different kinds of “figural deconstruction”. He opposes “instrumental deconstruction” 
which implies the use of tools to build the figure and “dimensional deconstruction” 
which  implies  links  between  figural  units  (for  example  the  points  A  and  B  - 
dimension  0D  -  indicate  the  measure  AB  -  dimension  1D)  in  order  to  exhibit 
mathematical  properties.  The  latter  deconstruction  may  imply  a  mathematical 
reasoning and suggests a geometrical paradigm closer to GII. Finally, we assume the 
fact the GWS is a favourable environment to analyse the process of conceptualization 
at stake because, according to Vergnaud’s meaning, the notion of representation of 
the  real  world  is  at  the  heart  of  the  process  of  conceptualization.  Therefore,  an 
analysis of students’ productions in term of figural treatment (according to Duval’s 
meaning) is a relevant way to describe the connection between the component of the 
GWS (Object of real world / tools / models of reference) and therefore allows us to 
approach the process of conceptualization at stake.

Results about students’ productions at the end of secondary school (14-15 y.o.)

The student’s  personal GWS  is adapted to the perception suggested by the task, as 
expected  a  priori.  The  operational  invariants  relative  to  the  recognition  of  the 
reflection  through  an  axis  are  different  according  to  the  task.  The  strategies  of 
superimposition,  folding or the use of common references are more present in the 
case GP than in the case PP. 

Students may develop arguments from the Euclidian affine geometry with different 
kinds of “signifier” (Presmeg, 2006): 

- signifier from an “instrumental deconstruction” (Duval, 2005), as for instance the 
theorem-in-action of cocyclicity : pupils use their compasses to test if a couple {point; 
image} of the figure belong to the same circle and therefore they infer it is a rotation. 
The language allows the denomination or describes the action.
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- signifier from a “dimensional deconstruction” (Duval, 2005) through mathematical 
symbolism on the drawing (equality of measure, orthogonally, etc.). The language is 
used to announce the mathematical properties and make deduction. 

These adaptations are used not only by students who propose correct answers but 
with students who propose wrong answers too. At the end of secondary school, we 
identify only one main kind of mistake made by students in these tasks.  Students 
apply the  theorem-in-action of cocyclicity at the question b) to recognize a rotation 
whereas it is actually a reflection through an axis (document 5). 

Doc. 5: student’s production with a wrong use of the theorem-in-action of cocyclicity.

We suppose this mistake is from a “cognitive conflict” about the dimension of the 
mathematical objects at stake with different transformations (between rotation and 
symmetry). With this theorem-in-action, students do not control the conservation of 
the measure of the angle with other couples {point; image}. They only refer to an 
instrumental deconstruction and not to relevant mathematical properties to recognize 
a  rotation.  This  mistake  could  be  expected  if  we  consider  the  relative  position 
between triangles (with a common top) but in the case PP, the transformation is given 
point by point (“CDE in GFE”) and several cases show stronger relation with the 
figure (because they still  use this  theorem-in-action) whereas these same students 
may adapt their strategies according to the task if the recognition of reflection occurs 
(namely  they  use  a  dimensional  deconstruction  in  order  to  refer  to  mathematical 
properties in the case PP). We have already noticed this mistake, called ‘theorem-in-
action of  cocyclicity” in  a  pre-test  with others  students  with the same age (Bulf, 
2007).
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Results about students’ productions at the second year of secondary school

If  we  compare  the  tab.  3  and  tab.  4,  students’  profiles  of  12-13  y.o.  are  more 
diversified. The personal GWS is still adapted to the perception suggested by the task 
but not as distinctly as for the students older, i.e. students use references to the real 
world mainly in the case GP but in the case PP too. On the other hand, they do refer 
to the Euclidian geometry in the case PP but sometimes in GP too. The mistakes are 
also more diversified because the adaptations to the perception suggested by the task 
are different than previously. We distinguish two main sorts of mistake: 

-  mistakes  caused by “contract’s  effect”  in  the case  PP.  The notion  of  didactical 
“contract”  is  designed  by  Brousseau  (1997)  as  a  “relationship  […]  [which] 
determines - explicitly to some extent, but mainly implicitly - what each partner, the 
teacher and the student, will have the responsibility for managing and, in some way 
or other, be responsible to the other person for managing and, in some way or other, 
be responsible to the other person for. This system of reciprocal obligation resembles 
a contract”. In our research, students propose mainly exhaustive explanations to solve 
the task in the case PP. They give too much mathematical properties to justify the 
transformation. Or, students change their mind and propose “institutional” properties 
on a wrong way to justify their choice in the case PP whereas their choice in the case 
GP was correct with naïve arguments from the real word. As for instance, one student 
justifies correctly the reflection through an axis (question b) in the case GP because 
he  writes  “it  is  possible  to  fold”  but  this  same  student  writes,  for  the  same 
transformation  in  the  case  PP,  it  is  a  reflection  through  a  point  because  “in  the 
reflection through a point, the image of a segment is a segment with the same length”. 
This student proposes this same “argument” at the question a) too, but in this case it 
is coherent. This “institutional” sentence is exactly the same which is given during 
the classroom. This kind of mistake lets think that the “dimensional deconstruction” 
(he  mentions  segments)  suggested  by  students’  activity  is  artificial,  and  confirm 
Duval’s point of view who pretend this cognitive operation is not self-evident.

- mistakes caused by “amalgam between notion on the same support” according to 
Artigue’s meaning (Artigue, 1990). Students are confused with the reflection through 
a point and the reflection through an axis, because these both transformations imply 
the same schemes as for  example the global  superimposition,  cutting in two both 
sides, the properties of equal distances, etc. In particular, some students recognize a 
reflection  through an axis  instead  of  a  reflection  through a  point  in  the case  GP 
(question a). Some other students recognize a reflection through a point instead of a 
reflection through an axis in the task called PP (question b). This kind of amalgam 
suggests the reflection through an axis is crystallized in a “global perception”, at least 
at the beginning of secondary school.

CONCLUSION AND DISCUSSION

This research is devoted to the analysis of students’ productions from two different 
levels at French secondary school. The students solved the same task given under two 
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different forms (one is called “Global Perception” (GP) and the other one is called 
“Punctual Perception” (PP)). This research points out that the personal Geometrical  
Working Space is more stabilized for a student at the end of secondary school than for 
a  student  at  the  beginning  of  secondary  school.  The  schemes  of  the  concept  of 
symmetry  are  more  flexible  and  can  be  adapted  to  the  task  (arguments  can  be 
empirical or from deduction in the frame of Euclidian Affine Geometry according to 
the perception suggested by the task). These adaptations show a relevant expertise of 
the dialectic of paradigms GI-GII when the reflection through an axis is involved, for 
the older students. However, the analyses of the mistakes of these students show a 
difference of conceptualization between the rotation and symmetry. Rotation involves 
an  “instrumental  deconstruction”  only,  whereas  the  symmetry  may  involve 
“dimensional deconstruction”. 

The  mistakes  made  by  younger  students  imply  a  sort  of  amalgam  between  the 
different symmetries or imply the use of an artificial “dimensional deconstruction”. 
These mistakes make unstable the GWS of these students.

This variation of the use and the effects of the concept of symmetry in the personal  
Geometrical Working Space leave questions about how is managed the concept of 
symmetry by the teacher during secondary school and how is managed the figural 
deconstruction.  Duval  has  already  mentioned  the  problem of  transmission  of  the 
different crossing of figural deconstruction (2D, 1D, 0D) in classroom (Duval, 2005). 
He  points  out  these  different  crossings  are  not  so  obvious  for  students,  and  the 
difficulty of these crossings are underestimated by teachers and curricula. This point 
concerns the rest of our research. 

NOTES

1. Official instructions: http://eduscol.education.fr/. BO n°10 Hors-Série, 15/10/1998, pp. 106-114 (3e ’s 
instructions).  BO  n°5  Hors-Série,  09/09/04,  pp.  4-16  (6e ’s  instructions).  BO  n°5  Hors-Série, 
25/08/2005, pp. 9-16 (5e ’s instructions).
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ABSTRACT
In this research we investigate whether students of the Pedagogical Department of  
Education have the basic geometrical knowledge which is related mainly with the 
similarity of shapes. We also investigate how they define similarity of shapes and if  
the intuitive knowledge affects their perception of similar shapes. The results showed  
that  students  have  developed  certain  structures  in  regard  to  some  concepts  in  
geometry  based  on  the  teaching  that  they  have  received  in  school.  The  results  
showed, as well, that a large percentage of students are not in a position to correctly  
define the similarity of shapes. Finally, research shown, that intuition affects their  
responses and their mathematical achievement.

INTRODUCTION

The role of geometry in the development of mathematical idea is very important. The 
geometrical skills and visual icons are basic instruments and source of inspiration for 
many mathematicians (Chazan & Yeryshalmy,1998 in Protopapas,2003). The content 
of geometry is appropriate both for the development of lower level of mathematical 
thinking, (i.e. the recognition of shape), as well as for higher order thinking, (i.e. the 
discovery of the properties of shapes), the construction of geometrical models and the 
solution of mathematical problems (NCTM, 1999). The representation of geometrical 
objects and the relationships between geometrical objects and their representations 
constitute important problems in geometry (Mesquita, 1998).

Geometry constitutes a basic part of the National Curriculum for Primary as well as 
Secondary Education. The concept of similarity between two shapes is taught in the 
3rd grade in Secondary School and in the 1st grade in higher Secondary School, with 
special  emphasis  on  the  similarity  of  triangles.  The teaching mainly concerns, 
understanding of the concept of similar shapes,  i.e.  that similar  shapes  are  those 
which their sides are proportional and their angles that are created by the respective 
angles are equal. 

Literature review has shown the concept of similarity is presented and taught through 
the environment of dynamic geometry and mainly through the use of applets. The 
concept is taught in coordination to the teaching of symmetry and transformations 
that can occur in a shape (http  ://  standards  .  nctm  .  org  /  document  /  eexamples  /  chap  6/6.4  ). 

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 736

http://standards.nctm.org/document/eexamples/chap6/6.4


In addition, the properties of similar shapes are presented and in the proof of Thalis 
theorem.  This theorem has some applications and proofs with the use of  the 
Geometer Sketchpad. Although there are no relationships presented in regard to the 
results  and  consequences  (proportion  of  relationships  of  line  segments)  of  Thalis 
Theorem and the concept of similarity of shapes (beyond quadrilaterals). 

The common teaching environment of geometry is very limited in formal education. 
For example, the constructions that the children are asked to deal with, the shapes are 
placed in a horizontal position, i.e. the sides are parallel to the sides of the object on 
which the construction is done. As a result  most students develop an holistic and 
stereotype view of the geometrical  shapes which is very affected  by the intuitive 
rules. 

At  the  university  level,  the  students  of  the  Department  of  Education  are  taught 
geometry through its historic evolution. In order to be able to follow and understand 
these lectures basic knowledge of geometry is required. This knowledge is mainly 
provided at the 3rd year of secondary school.  Unfortunately, students appear to be 
lacking knowledge. This may be due to the long interval that has transpired since they 
dealt with geometry or due to the teaching in higher secondary school where it is 
mainly expected by the student to memorize relationships instead of understanding 
and applying them.

It  is  possible that  the level  of mathematical  thinking may be influenced by some 
factors  which  are  mathematics  specific,  such  as  the  specific  mathematical 
terminology which may be in conflict with the meaning we give to these terms in 
every  day  life  or  the  conclusions  that  we  reach  based  on  the  intuitive  view  of 
mathematical knowledge.  

The aim of the present study is to investigate whether the students participating in 
EPA 171 (Basic concepts in mathematics) have the basic geometrical knowledge that 
is  required for  this  specific  course.  It  aims  to  investigate  students’  knowledge in 
regard to the similarity of shapes and how their intuitive knowledge may affect their 
perceptions about similar shapes.

THEORETICAL BACKGROUND
Geometry is comprised by three kinds of cognitive procedures which carry out 
specific epistemological functions (Duval, 1998):

a)  Visualization: Is the procedure which is related to the representation of space in 
order to explain a verbal comment, for the investigation of more complex situations 
and for a more holistic view of space and subjective confirmation. 

b)  Construction with the use of apparatus. The construction of shapes can act as a 
model. 

c)  Reasoning:  Is investigated in relation to verbal procedures and the extension of 
knowledge for proof and explanation. 
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These different procedures can be carried out separately. Thus the visualization is not 
based on the construction. There is however access on the shapes and the way that 
they  have  been  constructed.  Even  if  the  construction  leads  to  visualization,  the 
construction is based only on the connections between mathematical properties and 
technical  restriction  of  the  apparatus  which  are  used.   Furthermore  although  the 
visualization is an intuitive aid, necessary in is some instances for the development of 
proof, still the justification is solely depended on a group of sentences (definitions, 
axioms, theorems) which are available. In addition to this visualization is sometimes 
more deceptive or impossible.  Still these three kinds of cognitive procedures are 
closely linked and  their cooperation is necessary for any progress in geometry 
(Protopapas, 2003).

The concept of similarity:
Similarity constitutes a basic link between algebra and geometry and it also has a 
close  relationship  to  trigonometry.  The theorem which expresses  that  two similar 
triangles have their sides proportional and Pythagoras theorem constitute two basic 
links  between  geometry  and  algebra.  The  connection  of  geometry  and algebra  is 
particularly construction as it allows using the visualization of geometry in algebraic 
problems and the flexibility of algebraic operations in geometrical problems. Similar 
triangles and the Pythagoras theorem constitute the cornerstone of Trigonometry. By 
using  similar  triangles  we  can  calculate  the  sides  and  angles  of  an  object  by 
measuring the lengths of a smaller model. 

According  to  Vollrath  (1977)  in  geometry  similarity  constitutes  a  relationship 
between  shapes/figures.  A shape F1  is similar to a shape F2  if there is a 
transformation s such as s(F1) = F2. i.e. the square is similar to another one only when 
the  ration  of  their  sides  is  the  same.  In a didactical situation this constitutes a 
conclusion. Similar conclusions may be reached in regard to triangles and polygons. 
The  proof  is  given  based  on  the  definition,  using  the  properties  of  similar 
transformation. For a spiral approach of geometry it is important to know when it is 
possible to extract conclusions in regard to the understanding of similarity as it is 
defined through geometry or based on everyday language before teaching definition. 
Nevertheless, students do not seem to use the idea of sides’ proportion to secure an 
exact answer about the similarity of shapes in enlargement or deduction in size of a 
shape (Kospentaris and Spyrou, 2005).

This can form the basis for a general definition of the concept of similarity. For the 
teaching of similarity at University level it is necessary, the lecturers to know in what 
extent the link between representation and expression of the concept of similarity can 
support  or  inhibit  the  cognitive  procedure  for  this  relationship.  Furthermore  it  is 
important to know the explanation that the students give to similarity as it is used in 
everyday life or in a geometrical model (Vollrath, 1977). Kospentaris and Spyrou 
(2005) confirms in their study that the term similarity in everyday language does not 
in any way coincide with geometrical similarity, being more close to the meaning of 
having the same size.
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The  understanding  of  the  concepts  of  similarity  can  be  tested  with  exercises  of 
classifying geometrical objects due to the fact that similarity constitutes a relationship 
of similarity between shapes/figures. In the teaching of mathematical the exercises of 
classification  direct  students  in  the  study  of  properties  and  the  properties  that 
characterize  concept  and  lead  them  to  the  extraction  of  definitions  and  they 
coordinate the understanding of definitions.  Due to their importance we use exercises 
on  classification  to  investigate  students’  understanding  related  to  similarity 
irrespective of the mathematical definition. (Vollrath, 1977).

Intuition – and how it affects the teaching in mathematics:
As  suggested  by  Fischbein (1999) intuition  constitutes  a  theme  that  mostly 
philosophers are interested in. According to Descartes  (1967) and Spinoza (1967) 
intuition appears to be a genuine source of pure knowledge. Kant (1980) describes 
intuition as the ability which leads directly to your goals and indirectly to the basic 
knowledge.  Bergson (1954) made a distinction between intelligence and intuition. 
Intelligence is the way in which one may know the physical world,  the world of 
stability, the extent of the properties of statistical phenomena. Through intuition we 
have a direct perception of the essence of spiritual life and control of the phenomena, 
time and motion (Fischbein, 1999).

Some philosophers,  such as  Hans Hahn (1956)  and Burge (1968),  have criticized 
intuition and its effect, in its scientific explanation. They believe that intuition leads 
to deceptive results and this has to be avoided in the scientific procedure.

The investigation of intuitive knowledge appears mainly in the work of people that 
are interested in scientific and mathematical understanding of students (for example 
Clement et al., 1989; DiSessa, 1988; Gelman and Gallistel, 1978; McCloskey et al., 
1983;  Resnick,  1987;  Stavy and Tirosh,  1996;  Tirosh,  1991 in Sierpinska,  2000). 
There is not an accepted definition of intuitive knowledge. The term: “intuition” is 
used mainly as a mathematical basic term such as the point or line (Sierpinska, 2000).

The importance of  definition is probably respected just  like the elements  that  are 
based on intuition. The basic common properties of these are based on individual 
proofs which are in conflict to logical and analytic attempts. 

The  problem of  intuitive  knowledge  has  earned  an  important  place  in  scientific 
attempts.  On  one  hand  scientists  need  intuition  in  their  attempt  to  discover  new 
strategies, new theoretical and empirical models and on the other hand they need to 
be acquainted with what does not constitutes intuitionν– according to Descartes and 
Spinoza – basic guarantee, fundamental basis for objective truth.

The  interest  in  regard  to  intuition  also  stems  from  the  teaching  of  science  and 
mathematics. When you need to teach a chapter in science or mathematics you often 
discover that what was already a fact for you – after university level studies – comes 
in  conflict  with  basic  cognitive  obstacles  that  the  students  exhibit  in  their 
understanding. As a teacher you often believe that students are ready to memorize 
what  they  have  been  taught,  actually  they  understand  and  memories  relative 
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knowledge. Intuitive perception of phenomena is often different that to their scientific 
explanation.

In mathematics, the belief that a square is a parallelogram is intuitively very strange 
for many children. The belief that by multiplying two numbers we may get a result 
that is smaller than one or both the numbers which we have multiplied is also difficult 
to be accepted. Intuition affects many of our perceptions. The educator discovers that 
the knowledge which s/he is supposed to transfer to the students is in conflict, very 
often, with the beliefs and explanations which are direct and solid and at the same 
time in conflict with the scientifically accepted perceptions. 

THE STUDY
Aim:

The aim of the study is to investigate whether the students participating in EPA171 
(Basic concepts in mathematics) have the basic geometrical knowledge that is related 
mainly with the similarity of shapes. How do they perceive the concept of similarity 
of  shapes  and  how  their  intuitive  knowledge  may  affect  their  understanding  of 
similarity of shapes?

The three hypothesis of the study were:

1. The students have specific difficulties in basic concepts in geometry. 

2. The students define similarity of shapes based on similar triangles or intuitive 
knowledge. 

3. Intuitive knowledge affects their perception of similar shapes. 

Subjects:

The participants in this study were 85  students of the Pedagogical Department  of 
Education. 42 had mathematics as a major subject in higher secondary school, 39 had 
mathematics as a core subject and 4 did not specify. 

Design of the study:

In order to examine the hypothesis of this study a test was administered to all the 
students that took part in the study. The students had 40 minutes available to respond 
to  the  test.  The  tasks  of  the  tests  were  related  with  basic  geometrical  concepts 
(definition and construction of obtuse angle, application of properties of parallel lines 
and of the Pythagoras theorem in the solution of relevant exercises),  definition of 
similarity of shapes, recognition of similar shapes as well as tasks which were used to 
examine whether the students had the necessary knowledge which is required to teach 
the lesson.

For the analysis of the results descriptive statistic as well as the implicative analysis 
have been used.  More specifically for the data analysis the following elements of 
implicative analysis have been utilized: (a) The similarity tree-diagram which shows 
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the variables according to the similarity they show (b) the hierarchical tree-diagram 
which presents the implicative relationships according to the order of significance. 

Results:

The first hypothesis is confirmed in that  basic knowledge of geometry where no 
special attention is given in school,  such as the ability  to  give  the  definition  of 
concepts. For the examination of this hypothesis which concerns basic geometrical 
concepts four questions were posed. 

The first two questions were related mainly to the mathematical terminology which 
the students use. Students were asked to give a definition and construct an acute angle 
and it’s  supplementary.  The analysis of the results shows that 83%  can draw an 
obtuse angle but they only refer to the fact that it has to be bigger than 90ο but they do 
not specify that it has to be smaller than 180ο. 14% of the students who are mostly the 
ones that had mathematics as a major subject in higher secondary give a complete 
answer,  whereas 3% of  the students  can not  answer  this  basic  question at  all.  In 
regard  to  the  question  related  to  the  supplementary  angles 95%  give  a  complete 
answer  since  only  one  condition  is  requested  (sum  180ο)  and  only  5% does  not 
answer or gives a wrong answer.

The third question of the test concerns the use of basic relationship between angles 
and is based on parallel lines and the solution of a problem. These relationships are 
used  quite  extensively  in  secondary  education  something  that  leads  students  to  a 
direct recognition and use of the relationships. This is illustrated by the results in the 
test since the majority (90%) that dealt with the task in question 3 managed to give 
correct answers.

The forth  question  of  the test  require  a  direct  application  of  Pythagoras  theorem 
twice. The application of  Pythagoras’s theorem without its proof constitutes a basic 
chapter in the teaching of geometry in secondary school. Thus 82,5% of the students 
were able to solve the exercise, 4,5% were able to solve only half of the task and 13% 
either gave a wrong answer or did not provide a response. 

The second hypothesis was not fully confirmed. More than a third of the students 
could give a complete answer and a significant percentage of students referred to the 
similarity of the appearance of the shapes or the similarity of triangles. In order to 
examine this hypothesis the questions 5a and 5b were given. 

In the question 5a, which asked students to answer “what are similar shapes?” only 
36,5% of the students were able to give a complete answer (5iv). 21% referred to the 
similarity in the appearance of the shapes (5iii) and 14% referred to the similarity of 
triangles (5ii) which plays a significant role in the teaching of similarity in secondary 
education.  A significant  percentage  of  the students  12%  referred to  equality  (5i), 
whereas 16% of the students either did not provide any answer or gave a wrong 
response (5i).
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In order to examine whether the students have the ability to use the definition of 
similarity of shapes in an exercise regarding similar triangles, the second part (5b) of 
exercise 5 was asking students to find the relationship of similarity between given 
triangles. Differently to their responses in the 1st part of the exercise where 53% could 
give a complete answer, only 30% were able to reach a mid way to the solution. 17% 
could not solve the problem or did not give any response. 

For the application of the theory regarding the relationships of similarity and also for 
the examination  of  the third hypothesis,  exercise  8  was  presented where students 
were asked to find which polygons are similar. In contrast to exercise 5b where they 
had to write some relationships algebraically in order to prove the similarity of the 
shapes, in this exercise, they needed mental representations of the relationships so 
that the right choices could be made. Just like in question 5, some students confuse 
similarity  with  the  relationships  regarding  the  appearance  of  the  shape.  That  is 
probably why 87% responded that the parallelograms that have equal angles one side 
proportional  and  one  side  equal  are  similar  (8i).  It is very likely that they have 
reached this answer because both of them are parallelograms. 13%  of the students 
believe that the rectangles are similar to the square (8iv)  in the shape. This may be 
due to the fact that all three of them are parallelograms (appearance of the shape). 
Similarly 6%  believe that the right angle triangle is similar to the scalene triangle 
(8v),  most probably because both of the triangles have the same appearance. 80% 
recognize the similarity of the rectangles that are presented (8iii) and of the right 
angle triangles (8ii).
 

Figure 1: similarity tree diagram

5i 8iv 5iii 8v 5iv5ii 8ii8i8iii

Question 5: What are similar shapes?
5i:  referred to equality or no answer or wrong response.
5ii: referred to the similarity of triangles 
5iii:  referred to the similarity in the appearance of the 
shapes
5iv: complete answer  

Exercise 8: students were asked to find which polygons are similar. 
8i: responded that the parallelograms that have equal angles one side 
proportional and one side equal are similar. 
8ii: recognize the similarity of the right angle triangles 
8iii: recognize the similarity of the rectangles 
8iv: believe that the rectangles are similar to the square  in the shape. 
8v: believe that the right angle triangle is similar to the scalene triangle 

Wrong responses 8iv and 8v seemed to be 
grouped  with  wrong  definitions  of 
similarity 5i and 5iii Correct definition of similarity 5iv and the definition of similarity of 

shapes as the similarity of triangles 5ii are grouped and they are also 
grouped with the correct answers 8ii and 8iii respectively.
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In order to examine whether the definition that students give for the similarity of 
shapes affects their answer in exercise 8 where they are asked to recognize similar 
shapes we have used the similarity tree diagram (Figure 1). In the tree diagram the 
wrong responses in exercise 8 seemed to be grouped with the variables 8iv and 8v 
(similar shapes: square-rectangle, variable  8iv and right angle triangle and scalene 
triangle 8v) with the variables 5i and  5iii respectively of exercise 5 which refer to 
wrong definitions  of  similarity  (5i:  equality  of  shapes  or  wrong answer  and 5iii: 
similarity in the appearance of the shape). In addition to this, the correct definition of 
similarity (variable 5iv) and the definition of similarity of shapes as the similarity of 
triangles (variable 5ii) are grouped and they are also grouped with the correct answers 
in exercise 8, and the variables 8ii and 8iii respectively. The variable 8i which is the 
wrong answer in 8  since it presents the similarity of two parallelograms that their 
sides are not proportional appear to be grouped with the correct definitions (mainly 
with the definition of similar triangles and the correct answer in regard to rectangles) 
and the correct answers. This may be due to the fact that most students perceive as 
the  correct  answer,  something  that  indicates  that  students  are  depending  on  the 
perception of shapes and not the definitions and the properties of the shapes. 

Figure 2: hierarchical diagram

The hierarchical diagram (Figure 2)  shows that success in the definition constitutes 
success in the tasks in exercise 8, whereas in the wrong responses higher in line are 

5ii 8iii 5iv 8ii 8v8i 5iii5i8iv
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the tasks in exercise 8,  something that results  to  difficulty  in  giving  a  correct 
definition for the similarity concept. 

CONCLUSIONS

The data of the study suggest that students have developed certain structures in regard 
to  some  concepts  in  geometry  based  on  the  teaching  that  they  have  received  in 
school. The fact that in secondary education more emphasis is placed on the practical 
application of theory and less on the understanding of concept,  leads to students´ 
difficulty in giving complete definitions that require conditions, which in the practical 
application are implied without being presented (for example, the representation of an 
obtuse angle is never presented opposite to angles bigger than 180ο and that is why 
students never refer to the condition that an obtuse angle needs to be smaller than 
180ο). 

Based on this it appears that students are in a position to carry out operations by using 
certain formulas (Pythagoras’s theorem)  or recognize relationships in shapes which 
they were taught in school and they are expected to apply these in exercises similar to 
exercises 3 and 4 of this test. 

For a spiral approach and development of geometry, it is important to know when it 
is possible to extract conclusions in regard to the concept of similarity as it is defined 
in geometry. As it appears from the data, a large percentage of students are not in a 
position to correctly define the similarity of shapes. However they are able to apply 
the relationships of similarity in triangles since teaching in secondary education is 
related to the similarity of triangles 

In the search for similarity relationships in exercise 8 students influenced by their 
intuition found relationships that were based on the similarity of the appearance of 
the  shape  but  they  were  not  mathematically  similar.  This  indicates  that  intuition 
affects their responses and their mathematical achievement since a number of these 
students  have  not  received  adequate  mathematical  training  in  order  to  base  their 
answers on definitions, properties of the shapes and not on the perceptual appearance 
of the shape. 

The data suggest that the wrong similarity definition leads to wrong responses in the 
practical applications, whereas the wrong representations of concepts create students’ 
erroneous structures and definitions of the specific concepts. 

In conclusion, in regard to the teaching of geometry at University level it is important 
to give more attention in the teaching of basic geometrical concepts and skills. As it 
was shown by the results in this study the teaching that many students receive in 
secondary  school  is  inadequate,  something  that  affects  their  perception  and 
achievement in geometry. The lack or limited knowledge that students have, lead, to 
the  use  and  translation  of  mathematical  definitions  based  on  wrong  mental 
representations  which  are  affected  by  intuitive  knowledge and not  by  the correct 
mathematical definitions and correct representations.
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THE GEOMETRICAL REASONING 
OF PRIMARY AND SECONDARY SCHOOL STUDENTS

Georgia Panaoura and Athanasios Gagatsis

University of Cyprus, Department of Education

In the present paper comparing the geometrical reasoning of primary and secondary  
school students was mainly based on the way students confronted and solved specific  
geometrical tasks: the strategies they used and the common errors appearing in their  
solutions. This comparison shed light to students’ difficulties and phenomena related  
to the transition from Natural Geometry (the objects of this paradigm of geometry 
are material  objects) to Natural  Axiomatic Geometry (definitions and axioms are  
necessary  to  create  the  objects  in  this  paradigm  of  geometry)  and  to  the 
inconsistency of  the didactical  contract  implied in primary and secondary school  
education. These findings stress  the need for helping students  progressively move 
from the geometry of observation to the geometry of deduction.

INTRODUCTION

Teaching geometry so that students learn it meaningfully requires an understanding 
of  how students  construct  their  knowledge  of  various  geometric  topics  (Battista, 
1999).  This  means  it  is  necessary  that  mathematics  educators  investigate  and 
mathematics teachers understand how students construct geometrical knowledge as a 
result of their learning experiences in school. An important aspect of this research 
direction is the study of the strategies that students use in different geometrical tasks 
as well as the identification of their mistakes. In the work of Piaget and in the Geneva 
School we see that errors were for the first time viewed positively, in the sense that 
they allow the tracing of the reasoning mechanisms adopted by students.

The  literature  review  reveals  that  the  investigation  of  various  issues  related  to 
students’  geometrical  reasoning (knowledge,  abilities,  strategies,  difficulties)  is  in 
most cases restricted to the study of groups that come from one educational level. We 
believe  that  it  is  necessary  to  gather  empirical  data  which  would  allow  the 
comparison  between  groups  of  students  in  primary  and  secondary  education  and 
would be valuable sources of information regarding aspects of teaching in the two 
educational levels as well as the difficulties met by students of different age groups.

The transition from elementary to secondary school is recognized as a critical life 
event,  since,  progressing  from one  level  of  education  to  the  next,  students  may 
experience  major  changes  in  school  climate,  educational  practices,  and  social 
structures (Rice, 2001).  Research results reveal substantial  agreement that there is 
often a decline in students’ achievement following this transition, but achievement 
scores tend to recover in the year following the transition (Alspaugh, 1998). In the 
case of Cyprus, students experience difficulty during the transition from elementary 
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to secondary school which is evident in their performance in most topics, especially 
in mathematics.

This paper is based upon a research project which investigated the transition from 
elementary  to  secondary  school  geometry  in  Cyprus,  gathering  data  concerning 
students’ performance in tasks involving two-dimensional geometrical figures, three-
dimensional geometrical figures and net-representations of geometrical solids, as well 
as the students’ spatial abilities. In the present paper we focus on the strategies the 
students used to solve specific geometrical tasks involving two-dimensional figures 
and we study the kinds of errors that we identified in the students’ solutions.

THEORETICAL BACKGROUND

In the present paper we use as explanatory framework Duval’s cognitive approach to 
geometry  (Duval,  1995,  1998)  and  the  framework  of  Geometrical  Paradigms 
proposed by Houdement and Kuzniak (Houdement & Kuzniak, 2003; Houdement, 
2007). We also use the concept of the didactical contract, introduced by Brousseau 
(1984)  to  interpret  some  of  the  students’  wrong  answers.  According  to  him,  the 
didactical contract is defined as a system of reciprocal expectancies between teacher 
and pupils, concerning mathematical knowledge. The didactical contract is in large 
part implicit and is established by the teacher in her teaching practice. The students 
may interpret the situation put before them and the questions asked to them on the 
basis of the didactical contract and act accordingly.

A cognitive approach to geometry

Duval  (1998)  argues  that  geometry  involves  three  kinds  of  different  cognitive 
processes – visualization processes, construction processes and reasoning in relation 
to  discursive  processes  –  the  synergy  of  which  is  necessary  for  proficiency  in 
geometry.  Approaching  geometry  from  a  cognitive  point  of  view,  he  has 
distinguished four cognitive apprehensions connected to the way a person looks at the 
drawing  of  a  geometrical  figure:  perceptual,  sequential,  discursive  and  operative 
(Duval, 1995). Briefly, perceptual apprehension refers to what a person recognizes at 
first glance when looking at a geometrical figure, while sequential apprehension is 
required  whenever  the  construction  or  description  of  construction  of  a  figure  is 
involved. Discursive apprehension refers to the mathematical properties that cannot 
be  determined  through  perceptual  apprehension  of  a  figure,  but  must  be  given 
through speech or can be derived from the given properties. Operative apprehension 
depends  on  the  various  ways  of  modifying  a  given  figure.  Solving  geometrical 
problems often requires the interactions of these different apprehensions, and “what is 
called  a  ‘geometrical  figure’  always  associates  both  discursive  and  visual 
representations, even if only one of them can be explicitly highlighted according to 
the mathematical activity that is required” (Duval, 2006, p.108).
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The framework of Geometrical Paradigms

Keeping the idea of ‘paradigm’ from Kuhn, who used it to explain the development 
of  science,  Houdement  and  Kuzniak  (2003)  proposed  that  elementary  geometry 
appears to be split into three various paradigms,  characterizing different forms of 
geometry: Geometry 1 (natural geometry), Geometry 2 (natural axiomatic geometry) 
and Geometry 3 (formalist axiomatic geometry). The theoretical framework they have 
developed  specifies  the  nature  of  the  geometrical  objects,  the  use  of  different 
techniques and the validation mode accepted in each of the three paradigms. Here we 
briefly describe the first two geometrical paradigms distinguished by Houdement and 
Kuzniak (Houdement & Kuzniak, 2003; Houdement, 2007), which mainly concern 
primary and secondary school students that participated in the present study.

Geometry 1 is intimately related to reality and reasoning is close to experience and 
intuition. The objects of Geometry 1 are material objects, graphic lines on a paper 
sheet or virtual lines on a computer screen. Drawing and measurement techniques 
with  ordinary  geometrical  tools  (ruler,  set  square,  compass)  as  well  as 
experimentation in the sensible world (using techniques such as folding, superposing) 
are  used  in  this  paradigm.  New knowledge may  be produced based on evidence, 
experience or reasoning, while a permanent motion between the model and the reality 
enables the student to ‘prove’ the assertions.

In  Geometry  2  the  objects  are  ideal,  so  reasoning  relies  on  the  mathematical 
properties of the abstract geometrical objects. A system of definitions and axioms is 
necessary for the creation of the objects. In this system the axioms are as close as 
possible  to  intuition,  but  making  progress  and  reaching  certainty  demands 
demonstrations  inside  the  system.  Hypothetical  deductive  laws  are  the  source  of 
validation.

THE PRESENT STUDY

As noted  in  the  introduction,  this  paper  is  based  upon  a  research  project  which 
examined  primary  and  secondary  school  students’  geometrical  knowledge  and 
abilities  related  to  tasks  involving  different  geometrical  figures,  as  well  as  their 
spatial  abilities  in  micro-space.  Participants  in  our  study  were  1000 primary  and 
secondary  school  students  (488  males  and  512  females)  from  29  classes  of  9 
elementary schools and 12 classes of 8 secondary schools in four different districts of 
Cyprus. Specifically, the sample involved students from three grades (fourth grade – 
primary school: 332, sixth grade – primary school: 333 and, eighth grade – second 
grade of secondary school: 335). The mean age of the three grades was as follows: 
fourth grade, 9.8 years; sixth grade, 11.7 years; eighth grade, 13.9 years. Information 
concerning the instrument we constructed for the purpose of our research project and 
the procedure we followed can be found in Panaoura and Gagatsis (2008).

In the present paper we attempt to compare the geometrical reasoning of primary and 
secondary school students (the three age groups in our study) based on their solutions 
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to three specific geometrical tasks which involved two-dimensional figures (the three 
tasks are shown in the Appendix). At this point we have to stress that the comparison 
attempted here does not refer to the levels of success of the three groups of students, 
since  we  study  students  of  different  age,  from different  educational  levels,  with 
different learning experiences and different cognitive abilities.  Using as explanatory 
framework the theoretical notions presented above, we focus on the strategies and the 
common errors we identified in students’ solutions. In this direction first we present 
part of the results from our study concerning students’ solutions of three geometrical 
items included in the test and then we discuss these results and students’ difficulties 
under the light of didactic phenomena rising from our research. 

RESULTS ON SPECIFIC GEOMETRICAL ITEMS

Item [A] 

On the geometrical figure presented in item [A] a square and a right triangle can be 
identified. In order to give the correct answer, the students had to (a) identify, within 
the figure presented, the subfigures of the square and the right triangle, (b) pass from 
2D to 1D and ‘see’ that the unknown segment [AC] is one of the square’s sides and 
(c) recall and apply the cognitive unit referring to the property of equal sides in a 
square. At this point we must note that in the geometry test we included a multiple 
choice item to examine whether students possess the cognitive unit referring to the 
property of equal sides in a square. The results presented in Table 1 showed that 
while a high percentage of the students answered correctly to the specific multiple 
choice item (61.7% of 4th graders, 85.9% of 6th graders and 86.9% of 8th graders) – 
indicating they know that the four sides of a square are equal – a smaller number of 
students (especially from primary school)  eventually gave a correct answer to the 
geometrical item [A]. 

Item Answer 4th graders 6th graders 8th graders

Multiple 
choice 

Correct 61.7 85.9 86.9

Item [A]

Correct – using properties 36.4 71.8 66.9

Correct – applying theorem --- --- 18.5

Wrong – using ruler 8.4 2.1 ---

Wrong  –  arithmetical 
operations

6.0 4.8 2.4

Table 1: Students’ answers to multiple choice item and item [A] by age group

Crosstabs tables of performance to the multiple choice item by performance to item 
[A] were obtained for each age group in order to examine what percentage of the 
students who answered correctly to the specific multiple choice item, did actually 
solve the geometrical item [A]. The crosstabs results indicated that half of the 4th 
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grade students and a percentage of 22% of the 6th grade students who gave the correct 
answer to the multiple choice item (know that the sides of a square are equal) were 
not able to produce a correct answer to item [A]. The corresponding percentage was 
10% in the case of 8th grade students. So it seems that the secondary school students, 
working in the Natural Axiomatic Geometry paradigm, generally felt the need to use 
the properties and recalled the right one to solve item [A].

On  the  other  hand,  examining  at  the  common  errors  identified  in  the  students’ 
solutions  (Table  1),  we  notice  some  primary  school  students  who  gave  (wrong) 
answers after using their ruler to measure the unknown segment on the geometrical 
figure presented on their paper. Additionally, a small number of students of the three 
age groups tried to combine the arithmetical data of the problem in a random way in 
arithmetical operations in order to come to an answer.

At this point it is interesting to state that, while the students could give the correct 
answer to item [A] by simply applying the property of equal sides in a square, we 
identified  18.5%  of  the  secondary  school  students  who  solved  the  specific 
geometrical problem by applying Pythagoras’ theorem in the subfigure of the right 
triangle. This performance is probably influenced by a part of the didactical contract 
according to which they are expected to apply Pythagoras’ theorem any time a right 
triangle  is  involved  in  a  geometrical  figure.  On  the  other  hand,  the  specific 
performance  indicates  a  difficulty  concerning  the  transition  from  primary  to 
secondary  school.  Specifically,  the emphasis  put  on  the use  of  algorithms  during 
mathematics  teaching  in  the  secondary  school  seems  to  gradually  result  to  the 
phenomenon that the students feel the safe of using an algorithm to be greater than 
that of a simple application of a geometrical property.

Items [B] and [C]

In Table 2 we present the results of students’ attempts to solve two other geometrical 
tasks included in our test (item B and item C). Item [B] is a problem given to French 
students  entering  middle  school  (Duval,  2006).  Item [C]  was  constructed  for  the 
present study, as an analogous problem to item [B], with two basic differences. First, 
on  the geometrical  figure  presented  in  item [B],  the  subfigures  of  a  circle  and a 
rectangle  appear,  while  on  the  geometrical  figure  presented  in  item [C]  the  two 
subfigures  identified are a square and a rectangle.   Second, the ‘visibility’  of the 
geometrical  figure  (and its  subfigures)  is  less  in  the case  of  item [B] due to  the 
specific configuration.

Facing the geometrical problem presented in item [B] a number of students in the 
present  study  relied  only  on  a  visual  perception  of  the  figure  (perceptual 
apprehension) and either considered point  E as the middle of [AB] (16.5% of 6th 

grade students and 9.3% of 8th grade students), or answered that the length of segment 
[EB] is equal to the circle’s ray, “because it seems to be equal to the ray” (11.1% of 
6th grade students and 9.0% of 8th grade students). 
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Item [B]  Item [C] 

Answer 4th 

graders
6th 

graders
8th 

graders
4th 

graders
6th 

graders
8th 

graders

Correct – using 
properties

15.1 33.3 51.9 46.1 62.2 81.5

Wrong – visual 
perception (i)

Wrong  -  visual 
perception (ii)

6.6

8.7

16.5

11.1

9.3

9.0

3.3 4.5 0.6

Wrong  –  using 
algorithms 

10.2 5.4 0.9 11.4 9.9 2.1

Table 2: Students’ answers to item [B] and item [C] by age group 

In order to solve the item [C], the solver had to identify the two subfigures, to possess 
and to use the cognitive unit referring to the property of equal sides of a square. As in 
the case of item [B], a number of students relied only on the visual perception of the 
given figure and considering point E as the middle of [AB] answered that the length 
of segment [EB] is equal to 3.5 cm. In both cases perceived features of the geometric 
figures (relying on a perceptual apprehension of the given figure in each problem) 
have misled the students as to the mathematical properties involved in the problem 
solution and have obstructed appreciation of the need for discursive apprehension of 
the presented geometrical figure. 

Finally, it  is interesting to note that, as in the case of item [A], there are (mainly 
primary  school)  students  who  tried  to  give  an  answer  to  the  items  [B]  and  [C] 
combining in arithmetical operations the data presented in the geometrical problems. 
A possible explanation to the specific students’ performance is that, according to the 
implicit  didactical  contract  (Brousseau,  1984)  established during the teaching and 
learning processes in the mathematics classroom – especially the aspect concerning 
the solution of routine arithmetical word problems – when those students are given a 
geometrical  problem which involves  arithmetical  data,  they suppose  that  they  are 
expected to combine them in order to give an answer. They probably consider that in 
this way not only they can give an answer, but they also demonstrate that they have 
tried to solve the problem by identifying and using the data given in the problem. So, 
they assume that their teacher will be pleased with their performance!

DISCUSSION

Research about the learning of mathematics and its difficulties “must be based on 
what students do really by themselves, on their productions, on their voices” (Duval, 
2006, p. 104). In this paper we presented some results from our research referring to 
the solutions of primary and secondary school students in three geometrical items, 
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focusing on the strategies they used and their common errors. Once again we stress 
that we did not seek to compare students’ levels of success, since it is obvious that the 
students participating in our study have different learning experiences (as far as the 
amount of experiences and the teaching methods are concerned) and differ in their 
cognitive development.  The comparison of the solutions of the different age groups 
students shed light to phenomena related to the transition from Natural Geometry to 
Natural  Axiomatic  Geometry  and  to  the  inconsistency  of  the  didactical  contract 
implied in primary and secondary school education.

The transition from Natural Geometry to Natural Axiomatic Geometry

The passage from Geometry 1 to Geometry 2 is  a complex,  sensitive and crucial 
matter (Houdement & Kuzniak, 2003), since these two paradigms are different as far 
as  objects,  techniques  and  validation  mode  are  concerned  (Houdement,  2007). 
Moving from Natural  Geometry to Natural  Axiomatic  Geometry students  have to 
change their theory concerning the nature of the objects and of the space. They are 
forced to adopt the notion of conceptual objects, the existence of which is based on a 
definition in an axiomatic system. Consequently, they have to foster new techniques 
to work relying on the mathematical properties of each abstract geometrical figure.

The findings of the present study indicate that students working in the paradigm of 
Natural  Geometry (mainly primary school students  in our study) tend to consider 
geometrical objects as material objects and specific pictures rather than as theoretical, 
ideal objects which bear specific properties. This difficulty results to the phenomenon 
of  students  trying  to  solve  geometrical  problems  often  relying  on  the  visual 
perception of the given geometrical figure rather on a mathematical deduction based 
on the properties of the geometrical objects involved. This phenomenon is related to 
the  students’  difficulty  to  work  with  geometrical  figures  as  ‘figural  concepts’ 
(Fischbein, 1993). We call it  ‘geometrical figure to figural concept’ difficulty. As 
Mariotti  (1995)  has  noted,  correct  and  effective  geometrical  reasoning  is 
characterized  by  the interaction  and the harmony  between figural  and conceptual 
aspects of geometrical entities. In the present study, students working in the Natural 
Geometry  paradigm  (mainly  primary  school  students)  base  their  geometrical 
reasoning on the perceptual apprehension of the geometrical figure presented in a 
given task and this results to erroneous solutions, since the geometrical properties 
cannot be determined only through the specific  type of apprehension. The perceptual 
apprehension  of  a  geometrical  figure  must  be  under  the  control  of  the  verbal 
propositions (discursive apprehension) which are presented in a geometrical problem 
(Duval, 1998), in such a way that correct geometrical reasoning results through the 
combination and interaction of the verbal propositions and the geometrical figure. In 
contrast  to  the  students  working  under  the  Natural  Geometry  paradigm,  students 
working in the Natural Axiomatic Geometry paradigm (mainly amongst secondary 
school  students)  focus  their  efforts  on  geometrical  relations  and  they  confront 
geometrical  tasks  based  on  the  properties  of  geometrical  figures  (Houdement  & 
Kuzniak, 2003).
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Inconsistency of the didactical contract in primary and secondary education

The strategies used by the students in the solution of the presented tasks indicate that 
the didactical contract which is established among teachers and students concerning 
geometry learning in primary school education does not discourage all the students 
from (a) extracting conclusions based on the visual perception of a geometrical figure 
and (b) giving an answer extracted from random combination of the arithmetical data 
given in a geometrical problem. These aspects of the didactical contract were not 
identified to be present in the secondary school education, in the Natural Axiomatic 
Geometry paradigm, where the emphasis is on the properties of geometrical objects. 
We call this phenomenon “inconsistency of the didactical contract” among the two 
education levels  concerning the teaching of  geometry  and further  investigation  is 
needed in order to gather information regarding the actual teaching of geometry in 
primary and secondary schools. 

The power of the didactical contract of Natural Axiomatic Geometry 

In the case of geometry teaching in the secondary school, the emphasis on learning 
theorems  and  continuous  practice  with  close  tasks  demanding  the  application  of 
theorems may result in the application of these theorems even in cases that this is not 
necessary.  For  example,  as  a  consequence  of  the  continuous  practice  of  the 
Pythagoras’  theorem and  the  didactical  contract  formed  during  teaching,  students 
consider that they are expected to apply Pythagoras’ theorem any time a right triangle 
is  involved  in  a  geometrical  figure.  As  we  have  noted  in  the  results  section, 
attempting to solve a task which could be solved with the mere application of the 
property of equal sides in a square, almost one fifth of the 8th graders in the present 
study applied Pythagoras’ theorem in the rectangular triangle they identified in the 
given geometrical figure. The power of the didactical contract in secondary school 
geometry  concerning  the  application  of  theorems,  leads  students  to  mechanically 
apply the theorems, especially those that involve an algorithm, feeling safer to use an 
algorithm than a geometrical property.

Teaching implications and further research

Most of the difficulties that have been identified and discussed in the present study 
concerning primary  and secondary  school  students’  attempts  to  solve  geometrical 
problems are centred around the issue of the difficulties raised during the transition 
from Natural Geometry paradigm (where the objects are real,  material)  to Natural 
Axiomatic Geometry paradigm (where the objects are conceptual). Subsequently, one 
of  the  main  goals  during  the  teaching  of  geometry  should  be  to  help  students 
progressively pass from a geometry where objects and their properties are controlled 
by perception to a geometry where they are controlled by explicitation of properties. 
But,  as  Houdement  and Kuzniak (2003)  note,  students  and their  teachers  are  not 
necessarily  situated  in  the  same  geometrical  paradigm,  so  this  is  a  source  of 
educational  misunderstanding.  Therefore,  we  consider  essentially  important  that 
(prospective) primary and secondary school mathematics teachers are aware of the 
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existence  of  the  different  geometrical  paradigms  (Houdement,  2007)  and  of  the 
difficulties  arising  from the  fact  that  plane  geometrical  figures  on  paper  may  be 
considered by the students in the teaching process during elementary school as if they 
were real objects (Berthelot & Salin, 1998). Further research is needed in order to 
prescribe  and  compare  the  way  mathematics  teachers  in  primary  and  secondary 
school approach geometry in their classrooms.
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APPENDIX

Item A        Item C

On  the  right  triangle  ΑΒC, 
ΒC=10cm and ΑΒ=8cm. ΑCDΕ is a 
square (CD=6cm) . Find the length 
of segment ΑC.

On  the  rectangle  ABCD,  DC=7cm  and 
AD=3  cm.  AEFD  is  a  square.  Find  the 
length of segment EB.

Item B

On the figure sketched freehand here (the 
real  lengths  are  written  in  cm),  are 
represented  a  rectangle  ABCD  and  a 
circle with center A, passing through D. 

Find the length of segment EB.
4 cm

7cm

B

C

4cm

A E

D

10 cm

E

A

B

C

D

8 cm

6 cm

A B

D C

E

F

3 cm

7 cm
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STRENGTHENING STUDENTS’ UNDERSTANDING OF 
‘PROOF’ IN GEOMETRY IN LOWER SECONDARY SCHOOL

Susumu Kunimune, Taro Fujita & Keith Jones

Shizuoka University, Japan; University of Plymouth, UK; University of 
Southampton, UK

This  paper  reports  findings  that  indicate  that  as  many  as  80%  of  lower  
secondary age students can continue to consider that experimental verifications 
are enough to demonstrate that geometrical statements are true - even while, at  
the  same  time,  understanding  that  proof  is  required  to  demonstrate  that  
geometrical statements are true. Further data show that attending more closely  
to the matter of the ‘Generality of proof’ can disturb students’ beliefs about 
experimental verification and make deductive proof meaningful for them.

Key words: Geometrical reasoning, generality of proof, cognitive development, 
lower secondary school, curriculum design

INTRODUCTION

School geometry is commonly regarded as a key topic within which to teach 
mathematical  argumentation  and  proof  and  to  develop  students’  deductive 
reasoning and creative thinking.  Yet  while  deductive  reasoning and proof  is 
central to making progress in mathematics, it remains the case that students at 
the  lower  secondary  school  level  have  great  difficulty  in  constructing  and 
understanding  proof  in  geometry  (Battista,  2007;  Mariotti,  2007).  Our  work 
focuses on researching, and comparing, the teaching of geometry at the lower 
secondary school  level  in countries  in the East  and in the West,  specifically 
China, Japan and the UK (see, for example, Ding, Fujita, & Jones, 2005; Ding & 
Jones,  2007;  Jones,  Fujita  &  Ding,  2004,  2005).  In  our  research  we  are 
interested in students’ cognitive needs in the learning of geometrical concepts 
and thinking, and in principles for classroom practice which would satisfy such 
needs of students. 

In this paper we report selected findings from a series of research projects on the 
learning and teaching of geometrical proof carried out in Japan where formal 
proof is intensively taught in the lower secondary school grades (Grades 7-9). 
We address the issue of students’ cognitive needs for conviction and verification 
and how these  needs  might  be  changed and developed through instructional 
activity.  We first  present  how students  in  lower  secondary  schools  perceive 
‘proof’ in geometry in terms of the levels of understanding of geometrical proof. 
We do this by using data collected in 2005 from 418 Japanese students (206 
from Grade 8, and 212 from Grade 9). We then offer some suggestions that we 
have  developed from classroom-based research  (undertaken since  the  1980s) 
about  how  we  might  encourage  students’  geometrical  thinking  and 
understanding of deductive proof in geometry. 

Given  our  data  is  from studies  conducted  in  Japan,  we  begin  with  a  short 

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 756



account of the teaching of proof in geometry in Japan.

THE TEACHING OF PROOF IN GEOMETRY IN JAPAN

The  specification  of  the  mathematics  curriculum  for  Japan,  the  ‘Course  of 
Study’, can be found in the Mathematics Programme in Japan (English edition 
published by the Japanese Society of Mathematics Education, 2000). It should 
be noted that no differentiation is required in the ‘Course of Study’, and mixed-
attainment classes are common in Japan.  ‘Geometry’ is  one of the important 
topics (the other topics are ‘Number and Algebra’ and ‘Quantitative Relations’). 
The curriculum states that, in geometry, students must be taught to “understand 
the significance and methodology of proof” (JSME, 2000, p. 24). In terms of the 
Paradigm of Geometry proposed by  Houdement and Kuzniak (Houdement & 
Kuzniak, 2003), Japanese geometry teaching may be characterized as within the 
Geometry II paradigm (in that axioms are not necessarily explicit  and are as 
close as possible to natural intuition of space as experienced by students in their 
normal lives). 

In terms of Japanese curriculum materials (such as textbooks for Grade 8 and 
Grade  9  students)  our  analysis  indicates  a  varying  amount  of  emphasis  on 
‘justifying and proving’ (see, for example, Fujita and Jones, 2003; Fujita, Jones 
and Kunimune, 2008). While the curriculum requires that the principles of how 
to  proceed  with  mathematical  proof  are  explained  in  detail,  including 
explanations of ‘definitions’ and ‘mathematical proof’, our research repeatedly 
shows  that  many  students  difficulties  to  understand  proof  in  geometry  (for 
example, Kunimune, 1987; 20001).

In what follows we provide an analytical framework for students’ understanding 
of proof in geometry and then report on our data from three from surveys carried 
out in 1987, 2000 and 2005.

ASPECTS OF STUDENTS’ UNDERSTANDING OF PROOF IN 
GEOMETRY

In our research, as summarized in this paper, we capture students’ understanding 
of proof in terms of two components: ‘Generality of proof’ and ‘Construction of 
proof’. The first one these, ‘Generality of proof in geometry’, recognizes that, on 
the one hand, students have to understand the generality of proof in geometry, 
including  the  universality  and  generality  of  geometrical  theorems  (proved 
statements),  the  roles  of  figures,  the  difference  between  formal  proof  and 
experimental  verification,  and  so  on.  The  second  of  these  two  components, 
‘Construction of proof in geometry’, recognizes that, on the other hand, students 
also  have  to  learn  how  to  ‘construct’  deductive  arguments  in  geometry  by 
knowing  sufficient  about  definitions,  assumptions,  proofs,  theorems,  logical 
circularity, and so on.

Considering these two aspects,  we work with the following levels of student 
understanding (we do not have space in this paper to relate these levels to the 
van Hiele model):
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Level I: at this level, students consider experimental verifications are enough to 
demonstrate that geometrical statements are true. This level is sub-divided into 
two  sub-levels:  Level  Ia:  Do  not  achieve  both  ‘Generality  of  proof’  and 
‘Construction of proof’, and Level Ib: Achieved ‘Construction of proof’ but not 
‘Generality of proof’

Level II: at this level, students understand that proof is required to demonstrate 
geometrical statements are true. This level is sub-divided into two sub-levels: 
Level  IIa:  Achieved   ‘Generality  of  proof’,  but  not  understand  logical 
circularity, and Level IIb: Understood logical circularity 

Level III: at this level, students can understand simple logical chains between 
theorems

We used the following questions to measure students’ levels of understanding:

Q1 Read the following explanations by three students who demonstrate why the sum 
of inner angles of triangle is 180 degree. 

Student A ‘I measured each angle, and they are 50, 53 and 77. 50+53+77=180. 
Therefore, the sum is 180 degree.’ Accept/Not accept

Student B ‘I drew a triangle and cut each angle and put them together. They formed 
a straight line. Therefore, the sum is 180 degree.’ Accept/Not accept

Student C Demonstration by using properties of parallel line (an acceptable proof) 
Accept/Not accept

Q2 In Figure Q2, prove AD = CB when ∠ A = ∠ C, and AE=CE.

Q3The following argument carefully demonstrates that the diagonals of a 
parallelogram intersect at their middle points (see Figure Q3). ‘In a parallelogram 
ABCD, let O be the intersection of its diagonals. In ∆ ABO and ∆ CDO, AB // 
DC. Therefore, ∠ BAO = ∠ DCO and ∠ ABO = ∠ CDO. Also, AB = CD. 
Therefore ∆ ABO ≡  ∆ CDO. Therefore, AO = CO and BO = DO, i.e. the 
diagonals of a parallelogram intersect at their middle points’

Now, why can we say a) AB // DC, b) AB = CD, and c) ∆ ABO ≡  ∆ CDO?

Q4 Do you accept the following argument which demonstrates that in an isosceles 
triangle ABC, the base angles are equal? (see Figure Q4). ‘Draw an angle bisector 
AD from ∠ A. In ∆ ABD and ∆ ACD, AB = AC, ∠ BAD = ∠ CAD and ∠ B = 
∠ C. Therefore, ∆ ABD ≡  ∆ ACD and hence ∠ B = ∠ C’. If you do not accept, 
then write down your reason.

A

D B

C

E

     

A D

B C

O

     

A

DB C

Q2                           Q3                                  Q4
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In the above items,  Question 1 (Q1) checks whether learners can understand 
difference  between  experimental  verification  and  formal  proof  in  geometry. 
Question 2 (Q2) checks whether  learners can understand a simple proof.  Q3 
checks  whether  learners  can  identify  assumptions,  conclusions  and  so  on  in 
formal proof. Finally, Q4 checks whether learners can identify logical circularity 
within a formal proof (proof is invalid as ‘∠ B = ∠ C’ is used to prove ‘∠ B = 
∠ C’). To achieve Level II, students have to answer Q1 correctly. Students who 
perform well in Q2 and Q3 can be considered at least at Level Ib as they achieve 
good understanding in ‘Construction of proof’. Figure 1 summarizes the criteria 
and levels.

Level IaLevel Ib

Level IIa

Level IIb

Generality of proof

Construction of proof

Understand assumptions, 
conclusions, proof etc.

Measu
rement/E

xperim
ental 

verifi
ca

tio
n is

 enough

Fo
rm

al p
roof is

 nece
ss

ary

C: Correct, IC: Incorrect

Q1 A&B: IC

Q1 A or B: C

Q2&3: ICQ2&3: C
Q1: C

Q4: C Q4: IC

Figure 1: Criteria and levels of generality and proof construction

STUDENTS’ UNDERSTANDING OF PROOF IN GEOMETRY 

Student surveys were carried out in 1987, 2000 and 2005. One consistent result 
from  these  surveys  is  that  over  60%  students  consider  that  experimental 
verification is enough to say it is true that the sum of the inner angles of triangle 
is 180 degree. Tables 1 and 2 show data collected in 2005 (with 206 students 
from Grade 8,  and 212 students  from Grade 9,  collected from five  different 
schools).

Empirical 
argument using 
measures
(Student A 
explanation)

Empirical 
argument using 
tearing corners
(Student B 
explanation)

Proof
(Student C 
explanation)

Accept
Not 
accept

Accept
Not 
accept

Accept
Not 
accept

Grade 8 62% 32% 70% 21% 74% 15%

Grade 9 36% 58% 52% 38% 80% 6%

Table 1: Results of Q1

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 759



The results in Table 1 indicate that, whereas students can accept (or understand) 
that  a  formal  proof  (‘Student  C’  explanation)  is  a  valid  way of  verification, 
many  also  consider  experimental  verification  (‘Student  A’  or  ‘Student  B’ 
explanation) as acceptable. There are, however, changes from Grade 8 to Grade 
9,  as,  by  the  later  grade,  more  students  reject  empirical  arguments  or 
demonstrations. The likely reason for this is that Grade 9 students have more 
experience with formal  proof,  whereas in Grade 8 the students  are  only just 
started studying proof (for more on this, see Fujita and Jones, 2003).

Turning  now  to  students’  understanding  of  ‘Generality  of  proof’  and 
‘Construction of proof’, the results in Table 2 indicate the following: 

• More than half of students can construct a simple proof (Q2).

• Students (in Q3) show relatively good performance for Q3a and Q3b, and 
these indicate that students have good understanding about deductive 
arguments of simple properties. Q3c is more difficult as students are 
required to have knowledge about the conditions of congruent triangles. 

• The results of Q4 suggest that more than half of students cannot ‘see’ why 
the proof in Q4 is invalid; that is they cannot understand the logical 
circularity in this proof. 

Q2 Q3a Q3b Q3c Q4

Grade 8 57% 82% 80% 53% 34%

Grade 9 63% 85% 81% 59% 49%

Table 2: Result of Q2-4

In summary, as shown in Table 3, some 90% of Grade 8 and 77% of Grade 9 
students were found to be at level I. Data from surveys carried out in 1987 and 
2000 show similar results (see Kunimune, 1987, 2000). 

Level Ia Ib IIa or above

Grade 8 33% 57% 9%

Grade 9 28% 49% 22%

Table 3: levels of understanding

The result from Grade 9 shows a sight improvement from Grade 8. Using a 2x2 
cross-table in which the numbers of level Ia+Ib and IIa or above are considered, 
the chi-square value is 13.185 (df=1, p<0.01), and this indicates that the 
significant improvement can be observed between Grade 8 and Grade 9. 

Level Ia+Ib Level IIa or above

Grade 8 185 19

Grade 9 163 47

Table 4: comparing Grade 8 and Grade 9
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MOVING STUDENTS TO DEDUCTIVE THINKING

As evident  in a  recent  review of research  on proof and proving by Mariotti 
(2007,  p181),  the  ‘discrepancy’  between  experimental  verifications  and 
deductive reasoning is now a recognized problem. Japan is not an exception to 
this. Our findings given above indicate that Japanese Grade 8 and 9 students are 
achieving  reasonably  well  in  terms  of  ‘Construction  of  proof’,  but  not 
necessarily as well in terms of ‘Generality of proof’ in geometry. There is a gap 
between the two aspects. This means that students might be able to ‘construct’ a 
formal proof, yet they may not appreciate the significance of such formal proof 
in geometry. They may believe that a formal proof is a valid argument, while, at 
the same time, they also believe experimental verification is equally acceptable 
to ‘ensure’ universality and generality of geometrical theorems.  

Our data for Grade 9 students can be considered as quite concerning, given 80% 
of students remain at level I in terms of their understanding of proof even after 
they  have  studied  formal  proof  at  Grade  8  using  textbooks  where  90%  of 
relevant  intended  lessons  can  be  devoted  for  ‘justifying  and  proving’ 
geometrical facts’ (Fujita and Jones, 2003). However, we would like to stress 
that we are still encouraged by the result that 20% of Japanese students achieve 
relatively sound understanding of proof through everyday mathematics lessons.  

Hence, in our research, we turn to the question of working with students on why 
formal proof is needed. Based on over 10 years of classroom-based research, 
Kunimune  et  al (2007) propose the following principles for  lower secondary 
school geometry (Grades 7-9) designed to help students appreciate the need for 
formal proofs (in addition to the students being able to construct such proofs):

• Grade 7 lessons to start from problem solving situations such as ‘consider 
how to draw diagonals of a cuboid’, and so on;  this develops students’  
geometrical thinking and provides experiences of mathematical processes 
that are useful in studying deductive proofs in Grades 8 and 9; 

• Geometrical  constructions  to  be  taught  in  Grade  8;  this  replaces  the 
practice  of  teaching constructions  in Grade 7,  and then proving these 
same constructions in Grade 8, as such a gap between the teaching of  
constructions and their proofs has been found by classroom research to 
be unhelpful;

• Grade 8 lessons to provide students with explicit opportunities to examine 
differences between experimental verifications and deductive proof;  this  
helps students to appreciate such differences;

• Grade  8  lessons  to  start  the  teaching  of  the  teaching  of  deductive 
geometry  with a  set  of  already learnt  properties  which are shared and 
discussed within the classroom, and used as a form of axioms (a similar 
idea  to  that  of  the  ‘germ  theorems’  of  Bartolini  Bussi,  1996);  this  
provides students with known starting points for their proofs.

While we do not have space in this paper to provide data to support all these 
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principles, in what follows we substantiate those related to differences between 
experimental verifications and deductive proof in geometry. 

Constructions and proofs 

In  our  experience  (Shinba,  Sonoda and Kunimune,  2004),  while  geometrical 
constructions  (with  ruler  and  compasses)  can  be  taught  in  Grade  7,  these 
constructions are often not proved until Grade 8 (after students have learnt how 
to prove simple geometrical statements). In a series of teaching experiments, we 
investigated  the  use  of  more  complex  geometrical  constructions  (and  their 
proofs) in Grade 8. As an example, one of our lessons in Grade 8 started from 
the more challenging construction problem ‘Let us consider how we can trisect a 
given straight line AB’. 

In our classroom studies, we observed that such lessons are more active for the 
students. The students could also experience some important processes which 
bridge  between  conjecturing  and  proving.  Students  could  first  investigate 
theorems/properties of geometrical figures through construction activities, and 
this  led  them  to  consider  why the  construction  worked.  By  appropriate 
instructions by the teachers, the students then started proving the constructions. 
For example:

Student C: I thought that I could trisect AB when I constructed this (No. 11 in Figure 
2), but I think I found this is not true. So I prove that we cannot trisect the 
line AB. We just saw the construction No. 8 is true, so I use this approach 
in my proof. Now, I draw an equilateral triangle on AB (No. 11’), and by 
doing this,  we can trisect  the  AB, and proof  is  similar  to  No.  8.  Now, 
compare to this (No. 11’) to my construction, and C and D are not in the 
same place, as the height of the triangle ACB is shorter than the height of 
the square. We know we can trisect the AB by using this approach, and 
therefore, my method (No. 11) does not work.

No. 8 No. 11 No. 11’

Figure 2: Constructions proposed by students2

The data extract  above shows that  some students  in this class  start  using an 
already proved statement (i.e. a theorem) to justify why the construction (No. 11 
in Figure 2) does not work to trisect the line AB. 

Making explicit the differences amongst various argumentations

In  a  series  of  lessons  for  41  Grade  8  students,  tasks  were  designed  and 
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implemented to disturb students’ beliefs about experimental verification. In the 
lessons, students were asked, for example, to compare and discuss various ways 
of  verifying  the  geometrical  statement  that  the  sum  of  the  inner  angles  of 
triangles is 180 degrees (this relates to Q1 in the research questionnaire). The 
angle sum statement was chosen as way of trying to bridge the gap between 
empirical  and  deductive  approaches,  given  that  students  often  encounter  the 
angle sum statement in primary schools and they study this again with deductive 
proof in lower secondary school. While we do not have space in this paper to 
provide the data from the study, we can provide a summary of ways which can 
be useful  in  encouraging students  to  develop an appreciation of  why formal 
proof is necessary in geometry (for more details, see Kunimune, 1987; 2000).

• Students first exchange their ideas on various ways of verification; they 
comment  on  accuracy  or  generality  of  experimental  verification;  they 
discuss the advantages/disadvantages of experimental verifications.

• Students’ comments such as ‘A protractor is not always accurate ...’, ‘It 
takes time to measure angles, and we cannot see the reason why’, ‘The 
triangle is not general’, and so on, often cause a state of disequilibrium in 
students  (viz Piaget),  and  make  students  doubt  the  universality  and 
generality of experimental verification.

• Students made various comment s on the argument based on ‘cutting each 
angles and fitting them together’ (Q1-b). For example, ‘I think this is an 
excellent method as I cannot see any problems in this method’, ‘This is an 
easy method to check (whether the sum of inner angles of triangles is 180 
degree), ‘I think this is a good way, but because we use a piece of paper, I 
think it can be sometimes inaccurate’, and so on.

• Advice  from  teachers  is  necessary  to  encourage  students  to  reflect 
critically on different ways of verifications (viz establishment of ‘social 
norm’ in classrooms, Yackel and Cobb, 1996).

Kunimune (1987; 2000) found that, after such lessons, around 40% of students 
previously  at  Level  Ib have moved to  Level  II  (post-test  I).  They no longer 
accept experimental verification and start considering that deductive proof as the 
only acceptable argument in geometry. A later post-test (post-test II) carried out 
one month after the lessons found that about 60% of students are at Level IIa. 
Table 4 (below) summarises the result of the pre and post-tests with five types of 
cognitive  changes  observed  among  students  in  terms  of  the  levels  of 
understanding of proof in geometry. 

An interesting observation is the type d in which three students show unexpected 
behaviour in terms of their cognitive development in that there was a regression 
from level IIa to Ib. A detailed reason for this is unknown, but, unlike the 
majority of students, it might be that their states of disequilibrium created rather 
a ‘negative’ effect for these students. 

In summary,  we conclude that  the matter  of  the ‘Generality  of  proof’  could 
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usefully be explicitly addressed in geometry lessons in lower secondary schools. 

Type Pre-test Post-test I Post-test II N

a

b

c

Level II

Level I

Level I

Level II

Level II

Level I

Level II

Level II

Level II

2

13

9

d

e

Level I

Level I

Level II

Level I

Level I

Level I

3

14

Level II 2 18 24

Table 4: Results from Pre- and Post tests

CONCLUDING COMMENTS

This paper outlines research findings from Japan suggesting that, in terms of 
‘Generality  of  proof’  and  ‘Construction  of  proof’,  many  students  in  lower 
secondary school remain at Level I where they hold the view that experimental 
verifications  are  enough to  demonstrate  that  geometrical  statements  are  true, 
even  after  intensive  instruction  in  how to  proceed  with  proofs  in  geometry. 
Classroom studies have tested ways of challenging such views about empirical 
ways of verification which indicate that it is necessary to establish classroom 
discussions to disturb students’ beliefs about experimental  verification and to 
make deductive proof meaningful for them.

NOTES
1.   Some papers  by  Kunimune  (1987;  2000)  are  written  in  Japanese;  this  paper,  one  of  outcomes  of  our 

collaborative work over five years, contains his main ideas. 

2.  In No 8 AB is trisected by constructing a square whose diagonal is AB, and joining a vertex and midpoints; In 

No 11, an equilateral triangle and a square are constructed on AB; In No. 11’, AB is trisected by constructing 

equilateral triangles on AB, and joining a vertex and midpoints. 
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WRITTEN REPORT IN LEARNING GEOMETRY: 
EXPLANATION AND ARGUMENTATION

Sílvia Semana, Projecto AREA

Leonor Santos, DEFCUL, CIE, DIFMAT, Projecto AREA

In this article, we examine how the written report, within the context of assessment  
for learning, helps students in learning geometry and in developing their explanation  
and argumentation skills. We present the results of a qualitative case study involving 
Portuguese students of the 8th grade. This study suggests that using written reports  
improves those capabilities and, therefore, the comprehension of geometric concepts  
and processes. These benefits for learning are enhanced through the implementation  
of some assessment strategies, namely oral and written feedback. 

Key-words: Geometric thinking, explanation, argumentation, assessment for learning, 
written reports.

INTRODUCTION

Explanation, argumentation and proof are mathematics activities that assume a main 
role  in the teaching and learning of  geometry,  but  present  a  lot  of  difficulties  to 
students (Battista, 2007). The need to implement an assessment that contributes to 
students’ learning is also widely recognized: an assessment that guides the students 
and helps them to improve their learning (Wiliam, 2007). As such, in this study, we 
attempted to understand how the written report, as a tool of assessment for learning, 
contributes  to learning geometry and,  in particular,  reinforces the development  of 
students’ explanation and argumentation processes.

The present study follows a wider one that aimed at understanding the key role of the 
written report as an assessment tool supporting the learning of 8th grade students 
(aged thirteen) in mathematics. The larger study was developed during the academic 
year 2007/2008 under the scope of project AREA [1].

EXPLANATION,  ARGUMENTATION  AND  PROOF  IN  TEACHING  AND 
LEARNING GEOMETRY

All  over  the  world  and  in  Portugal,  in  particular,  the  mathematics  curriculum 
recognizes  geometry  as  a  privileged  field  for  the  development  of  explanation, 
argumentation  and  proof  (NCTM,  2000;  DGIDC,  2007).  Battista  and  Clements 
(1995)  notice  the  need  to  shape  the  curriculum  in  order  to  develop  students’ 
explanation  and  argumentation  skills  and  so  that  students  use  proof  to  justify 
powerful  ideas.  According  to  Polya  (1957)  mathematical  proof  should  be  taught 
because it helps in: (i) acquiring the notion of intuitive proof and logical reasoning; 
(ii) understanding a logical system; and (iii) keeping what is learnt in one’s memory.
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Many authors have addressed geometrical thought based on Van Hiele’s model. This 
model proposes a sequential progression in learning geometry through five discrete 
and qualitatively different levels of geometrical thinking: visual, descriptive/analytic, 
abstract/relational, formal deduction and rigor. However, according to Freudenthal 
(1991), these are relative levels, not absolute ones. Nevertheless, “the levels can help 
to find and further develop appropriate tasks (…) and they are obviously helpful for 
explorative activities to come across new, maybe even innovative ideas” (Dorier  et  
al.,  2003,  p.  2).  This  progression is determined by the teaching process,  thus the 
teacher has a key role in setting appropriate tasks so that students may progress to 
higher levels of thought and walk towards proof. The learning of deductive proof in 
mathematics  is  complex  and its  progress  is  neither  linear  nor  free  of  difficulties 
(Küchemann & Hoyle, 2002, 2003). As regards explanation, we may consider several 
modes,  including  non-explanations  (where,  for  example,  students  refer  to  the 
teacher's authority), explaining how, explaining to someone else (spontaneously) and 
explaining to oneself (in response to a question) (Reid, 1999). Argumentation is view 
as an intentional  explication of  the reasonings  used during the development  of  a 
mathematical task (Forman et al., 1998).

ASSESSMENT FOR LEARNING

Current  mathematics  curriculum documents  advocate  an  assessment  whose  main 
purpose is to support students' learning, and whose forms constitute, at the same time, 
learning situations (DGIDC, 2007; NCTM, 1995, 2000). “Assessment in education 
must, first and foremost, serve the purpose of supporting learning” (Black & Wiliam, 
2006, p. 9). In this study, assessment for learning is seen as “all the intent that, acting 
on  the  mechanisms  of  learning,  directly  contributes  to  the  progression  and/or 
redirection of learning” (Santos, 2002, p. 77). Several studies show that the focus on 
assessment  for  learning,  as  opposed  to  an  assessment  of  learning,  may  produce 
substantial improvement in the performance of students (Black & William, 1998). 

In order to develop their own knowledge about thinking mathematically,  students 
need to develop a conscious, reflective practice, which encompasses the processes of 
self-assessment. According to Hadji (1997), self-assessment is an activity of reflected 
self-control over actions and behaviours on behalf of the individual who is learning. 
Santos (2002) stresses that self-assessment implies that one becomes aware of the 
different moments and aspects of his/her cognitive activity, therefore it is a meta-
cognitive process. A non-conscious self-control action is a tacit, spontaneous activity 
that is natural in the activity of any individual (Nunziati, 1990), and in this sense all 
human  beings  self-assess  themselves.  Meta-cognition  goes  beyond  non-conscious 
self-control, for it is a conscious and reflective action (Nunziati, 1990).

Some assessment strategies can be adopted to promote learning, including: a positive 
approach  of  the  error;  oral  questioning  of  students;  feedback;  negotiation  of 
assessment criteria; and the use of alternative and diversified assessment instruments 
(Black  et al.,  2003; Santos, 2002). In particular, the written report is a privileged 
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instrument  to  monitor  students’  learning.  Students’  work  on  written  reports  has 
advantages in terms of developing their explanation and argumentation skills, which 
are two intrinsic requests of this instrument; furthermore, written reports may help 
students to reflect upon their work, because time and space are given (Mason, Burton 
& Stacey, 1982). “Intensive approach to argumentative skills, relevant 
for mathematical argumentation, seems to be possible through an 
interactive management of students’ approach to writing” (Douek & 
Pichat, 2003). The description of thinking processes, with the identification of the 
strategies used to solve a given task, including the difficulties that were encountered 
and the mistakes that were made, allows students to rethink their learning process. 
However, it is desirable that a report be done in “two stages” to allow for an effective 
opportunity for learning. This means that a first version of the report is subject to the 
teacher’s feedback and then the student develops a new version, a second one, taking 
into account the feedback received (Pinto & Santos, 2006).

METHODOLOGY

This study was based on an interpretative paradigm and on a qualitative approach. 
We chose the case study for the design research, given the nature of the problem to 
study and the desired final product (Yin, 2002).

The research involved an 8th grade class, with 24 students. We selected four of these 
students based on different mathematical performances, and taking into account their 
mathematics  communication skills.  These students  were Maria,  Rute,  Duarte,  and 
Telmo, and they constituted a working group in the classroom. 

Data were collected through lesson observation, namely, the lesson dedicated to the 
discussion of the guidelines for preparing the report and of the assessment criteria, 
and the lessons dedicated to carrying out tasks as well as the first and second versions 
of the reports. Three individual interviews to each of the four students were made, the 
first one at the beginning of the school year and the others after the establishment of 
the second version of each report. Two tasks led to the development of two written 
reports, each one with two versions.

The data were subjected to several  levels  of  analysis  that  took place periodically 
(Miles & Huberman, 1994), based on categories defined a posteriori that arose from 
the  data  gathered,  keeping  in  mind  the  focus  of  the  study  and  the  theoretical 
framework.

PEDAGOGICAL CONTEXT

Since the writing of a report was a novelty for the students, they were given a set of 
guidelines for writing the report and the assessment criteria. These two documents 
were discussed with the students. According to the guidelines, the organization of the 
report should include three parts:  introduction, development,  and conclusion. Both 
first two parts, and the tasks that originated the report, should be produced within the 
group.  The  last  part  should  be  held  individually  and  it  included  students’  self-
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assessment. The reports were produced in two "stages", the students benefiting from 
the teacher’s comments to the first stage in order to improve the second one. Students 
were not required to do any proof, but were asked to provide explanations for their 
thinking (Küchemann & Hoyle, 2003).

The  first  task  proposed  an  investigation  of  possible  generalizations  of  the 
Pythagorean  theorem.  Students  were  asked  to  remember  and  to  reflect  upon  the 
relationship  between the  areas  of  the  squares  constructed  on  the  sides  of  a  right 
triangle, and to investigate what happens if they construct other geometric figures on 
the  sides  of  a  right  triangle.  The  second  task  was  a  problem  that  involves  the 
application of the Pythagorean theorem in space. Students were asked to construct a 
cone  based  on  one  of  the  three  equal  sectors  of  a  circle,  with  a  radius  of  six 
centimetres,  and to determine the height of the constructed cone.  They were also 
encouraged to explain how they could determine the height of a cone obtained from a 
circle  with  a  radius  r.  These  tasks  were  chosen  based  on  the  assumption  that 
presenting  students  with  unfamiliar  questions  can  provide  a  rich  context  for 
classroom discussion which helps students  in  developing mathematical  arguments 
(Küchemann & Hoyle, 2003).

The first report

In the first task, students reflect on the meaning and implications of the Pythagorean 
theorem  and  review  some  geometric  concepts  and  procedures  (such  as  what  an 
equilateral triangle is and how it can be constructed with ruler and compass). Due to 
the nature of the task, the group is still required to formulate and test conjectures, and 
to argue in favour of their ideas, thus appealing to students’ mathematical reasoning 
skills. In particular, when writing the report, the students, in group, explain how they 
exploited the first situation proposed in the task, concerning equilateral triangles built 
on the sides of a right triangle.

In  the  first  version  of  their  report,  students  described  how  they  had  built  the 
equilateral triangles and stated how they had determined the areas of those triangles:

We started by making a right triangle, with the help of a compass we drew around it (at 
the  endpoints  of  the  right  triangle)  three  equilateral  triangles,  because  we  couldn’t 
obtain equilateral triangles nor a good graphic design by using rules. We determined the 
area of the triangles.

The justification for the use of compass comes in the wake of some oral feedback 
provided during the preparation of the report. This feedback may have helped the 
students to explain their options:

Rute: We did it like this: with the help of the compass, we made around it three 
equilateral triangles. Then we can put… ah…

Teacher: Why did you use the compass?

Rute: Because we couldn’t complete the task with the ruler only.
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Teacher: So, couldn’t you draw a triangle with the ruler only?

Rute: Yes, but in order to be an equilateral triangle, it had to have all equal sides.

In an attached document to their report, the 
group  presented  the  construction  of 
equilateral triangles, as well as the values of 
the basis and the height considered in each 
one. It also presented the calculations that 
were made to determine the corresponding 
areas.

However, in any part of the report, did the 
students  explain  how  they  had  found  the 
values of the bases and heights,  nor what 
conclusions  they  obtained  from  the  areas 
determined. Two different comments were 
provided to  the  first  version  of  the  report.  On the  one  hand,  the  teacher  praised 
students for their use of a compass and the reasons for their choice: "You did an 
excellent option. It’s a good way to answer a problem that you had to overcome." In 
this way, the teacher identified positive aspects of the report, so that knowledge could 
be consciously recognized by students and their self confidence could be promoted 
(Santos,  2003).  On  the  other  hand,  the  teacher  questioned  students  about  the 
conclusions  they  had drawn from the  areas  obtained:  "And what  did  you find?". 
Furthermore, the teacher still posed some questions written near the construction of 
the triangles,  which sought to guide the work of  students  in order  to include the 
missing  information  in  the  report:  "How did  you  come  to  these  figures?  Which 
relationship may you establish?"

While working on the second version of their report, the students kept the description 
that had been praised and tried to answer the questions. They explained in more detail 
how they had proceeded, namely in finding the values of the basis and height of the 
triangles, in determining the corresponding areas in each equilateral triangle, and in 
making explicit the conclusions they had obtained for the first situation:

We determined the area of the triangles. We know that in order to determine the area of 

a triangle:  basis×height
2  

, we measured the height and the basis, we multiplied  and 

then we divided by 2 (and likewise for the three triangles). We concluded that the sum 
of area A and area B is equal to area C.

In the final version, the students determined and identified the value of the area of 
each one of the considered triangles and explained the relationship found among the 
areas of the equilateral triangles constructed on the sides of the right triangle. This 
work was based on the figure of the first version:
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Students  still  added  a  comment.  They  identified  the  negative  aspects  of  the  first 
version and they improved them in the second stage: “[In the first stage] we didn’t 
present  the value for  the areas,  we messed  up the computations,  and we did not 
present the conclusions.” The students identified and corrected their own mistakes.

The second report

In the second task, the students review and apply the Pythagorean theorem as well as 
some mathematical  concepts and procedures (such as,  the height of a cone or the 
perimeter of a circle given its radius). Due to the nature of the task, it calls, mostly, 
for problem-solving and mathematical reasoning skills.

In the report, the students explained how they had built the cones and sought reasons 
for their actions. In particular, they explain how to determine the angle of each of the 
three circular sectors:

We started by reading the task and answering to what had been requested. We drew a 
circle of radius 6 cm. To divide the angle into three equal parts, we know that the angle 

measures 360º: (so  
360º

3
=120º ). With the help of a protractor, we measured, on the 

radius, 120º three times and joined the points and we got 3 equal parts. Then, we cut the 
three parts, and with the help of some tape, we constructed three cones.

Then, the students described the strategy implemented to determine the height of the 
cones. Before moving to the resolution itself, they made a brief description of how 
the  group  had  addressed  the  issue,  referring  various  ideas  discussed  and  some 
difficulties  encountered, 
which  they  sought  to 
overcome with the help of the 
teacher. Then they determined 
the radius of the basis of the 
cone,  giving  the  necessary 
calculations  (determining  the 
perimeter  of  the  original 
circle, the perimeter of the basis of the cone and, finally, the radius of the basis of the 
cone).

The  sum  of  area  A  and 
area  B  is  equivalent  to 
area C.
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However they did not explain the calculations nor did they give reasons for those 
calculations; they did not distinguish the two circles involved (the original one and 
the basis of the cone), nor did they present units of measurement. Written feedback 
was provided with the intention of alerting students to these aspects: "Why did you 
do these calculations? You refer the perimeter of the circle several times. Maybe it 
would be better to distinguish which circle you are talking about in each situation. 
Attention to the lack of measurement units". The importance of students’ explanation 
and justification of their calculations was further strengthened through oral feedback:

Teacher: “(...) you must try to explain the calculations you presented better and why 
you have done them”. You presented these calculations,  didn’t you? For 
what? When? How?

Rute: The teacher wants to know everything!

Teacher: I want to know everything, no… Imagine that I’m teaching a lesson and I 
write something on the blackboard, and then you ask me “teacher, what is 
that?” and I say “You want to know everything!”, right?

Rute: Teacher, but, here, we already know that this is the perimeter...

Teacher: You know, but you must write what you mean. I am not going to take Rute 
home to explain it to me, right?

It was also necessary to complement the written feedback with new clues, so that the 
students could distinguish the different circles considerered in the resolution of the 
problem:

Rute: Teacher, how do we distinguish the circles?

Teacher: Which circles did you work with?

Rute: With the one with radius six.

Teacher: Yes. And didn’t you work with any other circle?

Rute: With the basis.

Teacher: The basis?

Rute: Yes, of the cone.

Teacher: So, in the report, you only have to say which one you are referring to when 
you explain what you did.

The students took into account the feedback received, both oral and written. In the 
final version of the report, besides adding the measurement units, they described how 
they had proceeded to determine the radius of the basis of the cone. They clarified the 
context, they explained the purpose of the calculations they had presented, and they 
also identified the circle referred in each case:

First  we  found  the  perimeter  of  the  circle  of  the  problem.  Then  we  divided  the 
perimeter of the circle of the problem into three equal parts, and we got the perimeter of 
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the basis of a cone. Knowing that to find the perimeter of the circle is 2π r , to find the 
radius is the other way around: P÷2π = r . And then, we obtained 1,9 cm.

In the first version of the report, students had already tried to describe in detail the 
right triangle used to determine the height of the cone and they explained how they 
had determined the length of the hypotenuse (which they refer to as diagonal) of that 
triangle: 

If we draw the height of the cone, it will coincide with the radius 
forming an angle of 90º. If, at the endpoints of the lines, we draw a 
line segment, it will form a right triangle and, for our own luck, it 
was the diagonal, which we knew about.

We know that the diagonal measures 6 cm because the diagonal is 
the radius of the circle when we open the cone, and, as the radius of the circle is 6 cm, we 
got to know the diagonal.

Finally, the students presented the necessary calculations to determine the height of 
the cone, but they did not mention how they had concluded that “height of the cone² 
= diagonal² - radius²”. They were reminded of this fact through written feedback: 
"How do you achieve this equality?" In the final version of the report, the students 
considered  the  feedback  received  and  stated  that  they  had  used  the  Pythagorean 
theorem to obtain the height of the cone.

DISCUSSION OF RESULTS

In this study, students were asked to describe and explain the strategies used in the 
implementation of two tasks and to submit the results, duly substantiated, under the 
form  of  written  reports.  Students,  working  in  a  group,  were  given  constructive 
comments on the first version of their reports so that they could improve their work 
and develop a  second version.  In  many cases,  in  the  first  version of  the reports, 
students  gave  procedural  explanations  instead  of  providing  a  mathematical 
justification (Hoyle & Küchemann, 2003). In other words, they presented how they 
had done their work, but not why. For example,  in the first  version of the report 
regarding the first task, students described how they had built the equilateral triangle, 
but they did not mention the characteristics of this figure. In the second version of the 
report, students presented mathematical arguments for the choices made and for the 
results  found  in  performing  the  tasks.  They  also  used  symbolic  language  of 
mathematics when necessary (it happened, for example, when they obtained the area 
of equilateral triangles in the first task or when they obtained the height of the cone in 
the  second  task).  However,  in  both  cases,  they  seemed  to  be,  mainly,  at  the 
descriptive/analytic level of Van Hiele’s geometrical thinking model.

Feedback, both oral and written, allowed students to identify aspects to improve in 
the reports and provided clues about what students could do to develop their first 
productions.  Indeed,  feedback seems to have enabled students to produce a better 
report in the second version, especially regarding explanation and justification of the 
strategies adopted (it should be noted, for example, the explanation given, in the final 
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version, to the operation performed in the first phase to obtain the radius of the basis 
of the cone, starting from its perimeter). In addition, the feedback did not contain any 
information about errors; it only included guiding questions and comments (Black et  
al., 2003; Santos, 2003). This led students to identify mistakes and to correct them (as 
is evident in the first task, in which the students relate what they had done wrong in 
the  first  version).  Thus,  feedback  also  promoted  the  development  of  students’ 
reflection and self-assessment skills (Nunziati, 1990).

The  need  for  students  to  explain  and  justify,  in  written  form,  the  mathematical 
procedures and results involved in performing mathematically  rich tasks caused a 
high level of demand and consequently of learning. These situations, which involve 
knowledge that students possibly know, but which they need to explain and justify, 
have a strong didactic purpose (Küchemann & Hoyle, 2003). The identified benefits 
associated with the written reports seem to be enhanced by investing on a type of 
report in "two stages", in which oral and written feedback gain prominence.

NOTES

1.  The  project  AREA  (Monitoring  Assessment  in  Teaching  and  Learning)  is  a  research  project  funded  by  the 

Foundation for Science and Technology (PTDC/CED/64970/2006). The main objectives of the project are to develop, 

implement  and  study  practices  of  assessment  that  contribute  for  learning.  Further  information  can  be  found  in 

http://area.fc.ul.
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MULTIPLE SOLUTIONS FOR A PROBLEM: A TOOL FOR 
EVALUATION OF MATHEMATICAL THINKING IN 

GEOMETRY 
Anat Levav-Waynberg & Roza Leikin 

University of Haifa - Israel 
Based on the presumption that solving mathematical problems in different ways may 
serve as a double role tool - didactical and diagnostic, this paper describes a tool 
for the evaluation of the performance on multiple solution tasks (MST) in geometry. 
The tool is designed to enable the evaluation of subject's geometry knowledge and 
creativity as reflected from his solutions for a problem. The example provided for 
such evaluation is taken from an ongoing large-scale research aimed to examine the 
effectiveness of MSTs as a didactical tool. Geometry is a gold mine for MSTs and 
therefore an ideal focus for the present research, but the suggested tool could be 
used for different mathematical fields and different diagnostic purposes as well. 
 Introduction 
The study described in this paper is a part of ongoing large-scale research (Anat 
Levav-Waynberg; in progress). The study is based on the position that solving 
mathematical problems in different ways is a tool for constructing mathematical 
connections, on the one hand (Polya, 1973, 1981; Schoenfeld, 1988; NCTM, 2000) 
and on the other hand it may serve as a diagnostic tool for evaluation of such 
knowledge (Krutetskii, 1976). In the larger study we attempt to examine how 
employment of Multiple-solution tasks (MSTs) in school practice develops students' 
knowledge of geometry and their creativity in the field. In this paper we present the 
way in which students' knowledge and creativity are evaluated. 
Definition: MSTs are tasks that contain an explicit requirement for solving a 
problem in multiple ways. Based on Leikin & Levav-Waynberg (2007), the 
difference between the solutions may be reflected in using: (a) Different 
representations of a mathematical concept; (b) Different properties (definitions or 
theorems) of mathematical concepts from a particular mathematical topic; or (c) 
Different mathematics tools and theorems from different branches of mathematics. 
Note that in the case of MSTs in geometry we consider different auxiliary 
constructions as a difference of type (b).  
Solution spaces 
Leikin (2007) suggested the notion of "solution spaces" in order to examine 
mathematical creativity when solving problems with multiple solution approaches as 
follows: Expert solution space is the collection of solutions for a problem known to 
the researcher or an expert mathematician at a certain time. This space may expand 
as new solutions to a problem may be produced. There are two types of sub-sets of 
expert solution spaces: The first is individual solution spaces which are of two 
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kinds. The distinction is related to an individual’s ability to find solutions 
independently. Available solution space includes solutions that the individual may 
present on the spot or after some attempt without help from others. These solutions 
are triggered by a problem and may be performed by a solver independently. 
Potential solution space include solutions that solver produce with the help of 
others. The solutions correspond to the personal zone of proximal development 
(ZPD) (Vygotsky, 1978). The second subset of an expert space is a collective 
solution space characterizes solutions produced by a group of individuals.  
In the present study solution spaces are used as a tool for exploring the students' 
mathematical knowledge and creativity. By comparing the individual solution 
spaces with the collective and expert solution spaces we evaluate the students' 
mathematical knowledge and creativity. 
MST and mathematics understanding 
The present study stems from the theoretical assumption that mathematical 
connections, including connections between different mathematical concepts, their 
properties, and representations form an essential part of mathematical understanding 
(e.g., Skemp, 1987; Hiebert & Carpenter, 1992; Sierpinska, 1994). Skemp (1987) 
described understanding as the connection and assimilation of new knowledge into a 
known suitable schema. Hiebert & Carpenter (1992) expanded this idea by 
describing mathematical understanding as “networks” of mathematical concepts, 
their properties, and their representations. Without connections, one must rely on his 
memory and remember many isolated concepts and procedures. Connecting 
mathematical ideas means linking new ideas to related ones and solving challenging 
mathematical tasks by seeking familiar concepts and procedures that may help in 
new situations. Showing that mathematical understanding is related to 
connectedness plays a double role: it strengthens the importance of MSTs as a tool 
for mathematics education and it justifies measuring mathematics understanding by 
means of observing the subjects' mathematical connections reflected from one 
performance on MSTs.. 
Why geometry 
The fact that proving is a major component of geometry activity makes work in this 
field similar to that of mathematicians. The essence of mathematics is to make 
abstract arguments about general objects and to verify these arguments by proofs 
(Herbst & Brach, 2006; Schoenfeld, 1994).  
If proving is the main activity in geometry, deductive reasoning is its main source. 
Mathematics educators claim that the deductive approach to mathematics deserves a 
prominent place in the curriculum as a dominant method for verification and 
validation of mathematical arguments, and because of its contribution to the 
development of logical reasoning and mathematics understanding (Hanna, 1996; 
Herbst & Brach, 2006). In addition to these attributes of geometry, which make it a 
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meaningful subject for research in mathematics education, geometry is a gold mine 
for MSTs and therefore an ideal focus for the present research. 
Assessment of creativity by using MST 
Mathematical creativity is the ability to solve problems and/or to develop thinking in 
structures taking account of the peculiar logico-deductive nature of the discipline, 
and of the fitness of the generated concepts to integrate into the core of what is 
important in mathematics (Ervynck ,1991, p.47) 
Ervynck (1991) describes creativity in mathematics as a meta-process, external to 
the theory of mathematics, leading to the creation of new mathematics. He maintains 
that the appearance of creativity in mathematics depends on the presence of some 
preliminary conditions. Learners need to have basic knowledge of mathematical 
tools and rules and should be able to relate previously unrelated concepts to generate 
a new product. The integration of existing knowledge with mathematical intuition, 
imagination, and inspiration, resulting in a mathematically accepted solution, is a 
creative act. 
Krutetskii (1976), Ervynck (1991), and Silver (1997) connected the concept of 
creativity in mathematics with MSTs. Krutetskii (1976) used MSTs as a diagnostic 
tool for the assessment of creativity as part of the evaluation of mathematical ability. 
Dreyfus & Eisenberg (1986) linked the aesthetic aspects of mathematics (e.g., 
elegance of a proof/ a solution) to creativity. They claim that being familiar with the 
possibility of solving problems in different ways and with their assessment could 
serve as a drive for creativity. In sum, MSTs can serve as a medium for encouraging 
creativity on one hand and as a diagnostic tool for evaluating creativity on the other. 
According to the Torrance Tests of Creative Thinking (TTCT) (Torrance, 1974), 
there are three assessable key components of creativity: fluency, flexibility, and 
originality. Leikin & Lev (2007) employed these components for detecting 
differences in mathematical creativity between gifted, proficient and regular students 
in order to explain how MSTs allow analysing students' mathematical creativity, and 
thus serve as an effective tool for identification of mathematical creativity.  
Fluency refers to the number of ideas generated in response to a prompt, flexibility 
refers to the ability to shift from one approach to another, and originality is the 
rareness of the responses.  
In order to assess mathematical thinking in the Hiebert & Carpenter (1992) and 
Skemp (1987) sense, while evaluating problem solving performance of the 
participants on MSTs, we added the criterion of connectedness of mathematical 
knowledge which is reflected in the overall number of concepts/theorems used in 
multiple solutions of a MST.  
In this paper we outline the use of MSTs as a research tool for evaluation of 
mathematical knowledge and creativity in geometry. 
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Method  
Following MST instructional approach, three 60 minutes tests were given to 3 
groups of 10th grade, high-level students during geometry course (total number of 52 
students). The first test was admitted in the beginning, the second in the middle and 
the third in the end of the course. Each test included 2 problems on which students 
were asked to give as many solutions as they can.  

Example of the task 
The following is one of the MSTs used for the tests 
TASK: 
AB is a diameter on circle with center O. D and E are 
points on circle O so that DO||EB . 
C is the intersection point of AD and BE (see figure).  

Prove in as many ways as you can that CB=AB 
Examples of the solutions 

Solution 1: 

 ABDO
2
1

=  (Equal radiuses in a circle) ⇒ DO is a midline in triangle ABC (parallel to BC 

and bisecting AB) ⇒ BCABDO
2
1

2
1

== ⇒ AB=BC 

Solution 2: 

 DO=AO (Equal radiuses in a circle) ⇒ ABCAOD ∠=∠ (Equal corresponding angles within 
parallel lines) ⇒ AA ∠=∠  (Shared angle) ⇒ ABCAOD ΔΔ ~  (2 equal angles) ⇒                     
AB=BC (a triangle similar to an isosceles triangle is also isosceles) 

Solution 3: 

 DO=AO (Equal radiuses in a circle) ⇒ AADO ∠=∠ (Base angles in an isosceles triangle) 

 ACBADO ∠=∠  (Equal corresponding angles within parallel lines), AACB ∠=∠ ⇒ 

 AB=BC (a triangle with 2 equal angles in isosceles) 

Solution 4: 

 Auxiliary construction: continue DO till point F so that DF is a diameter. Draw the line FB (as 
shown in the figure) 

 DO=AO (Equal radiuses in a circle) ⇒ AADO ∠=∠ (Base angles in an isosceles triangle) 

 AF ∠=∠  (Inscribed angles that subtend the same arc) ⇒ 

  ADOF ∠=∠ ⇒ CD|| BF (equal alternate angles) 

 DFBC is a parallelogram (2 pairs of parallel sides) ⇒ 

 DF=CB (opposite sides of a parallelogram), DF=AB (diameters) ⇒ AB=BC 

Figure 1: Example of MST 

A

O

B

D

C E

 

 A 

D O 

C 

F 

B 
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Figure 2: The map of an expert solution space for the task (see Figure 1)
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Figure 1 presents an example of a task used in this study. Figure 2 depicts a map of 
the expert solution space for this task. The map outlines concepts and properties 
used in all the solutions as well as the order of their use in each particular solution 
(for additional maps of MSTs see Leikin, Levav-Waynberg, Gurevich and 
Mednikov, 2006). 
The bold path in the map (Figure 2) represents Solution 1 of the task (see Figure 1).  
Data analysis 
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n: number of solutions in the individual solution space 
N: number of the students in a group 

T:  number of concepts and their properties used  in the expert 
solution space 

t:  number of concepts and their properties used in the individual 
solution space 

mi: the number of students who used 
the strategy i 

P= %100
N
mi  

Figure 3:  Scoring scheme for the evaluation of problem-solving performance 
on a particular MST based on Leikin (forthcoming) 
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The analysis of data focuses on the student's individual solution spaces for each 
particular problem. The spaces are analyzed with respect to (a) Correctness; (b) 
Connectedness; (c) Creativity including fluency, flexibility, and originality. 
The maximal correctness score for a solution is 100. It is scored according to the 
preciseness of the solution. When solution is imprecise but lead to a correct 
conclusion we consider it as appropriate (cf. Zazkis & Leikin, 2008). The highest 
correctness score in an individual solution space serves as the individual's total 
correctness score on the task. This way a student who presented only 1 correct 
solution (scored 100) does not get a higher correctness score than a student with 
more solutions but not all correct. Connectedness of knowledge associated with the 
task is determined by the total number of concepts and theorems in the individual 
solution space. Figure 3 depicts scoring scheme for the evaluation of problem-
solving performance from the point of view of correctness, connectedness and 
creativity. The scoring of creativity of a solutions space is borrowed from Leikin 
(forthcoming). In order to use this scheme the expert solution space for the specific 
MST has to be divided into groups of solutions according to the amount of variation 
between them so that similar solutions are classified to the same group. The number 
of all the appropriate solutions in one's individual solution space indicates one's 
fluency while flexibility is measured by the differences among acceptable solutions 
in one's individual solution space. Originality of students' solution is measured by 
the rareness of the solution group in the mathematics class to which the student 
belongs. In this way a minor variation in a solution does not make it original since 
two solutions with minor differences belong to the same solution group.  
Note that evaluation of creativity is independent of the evaluation of correctness and 
connectedness. In order to systematize the analysis and scoring of creativity and 
connectedness of one's mathematical knowledge we use the map of an expert 
solution space constructed for each problem (see Figure 2).  
Results – example 
In the space constrains of this paper we shortly exemplify evaluation of the problem-
solving performance of three 10th graders – Ben, Beth and Jo -- from a particular 
mathematics class. The analysis provided is for their performance on Task in Figure 
1. Their solutions are also presented in this figure. We present these students' results 
because they demonstrate differences in fluency, flexibility and originality. 
Solutions 1, 2 and 3 are classified as part of the same solutions group whereas 
solution 4 which uses a special auxiliary construction is classified as part of a 
different group. 
Ben performed solutions 1, 3 and 4, Beth produced solutions 1, 2 and 3, and Jo 
succeeded to solve the problem in two ways: solutions 1 and 3 (Figure 1). Figure 4 
demonstrates connectedness and creativity scores these students got on the Task 
when the scoring scheme was applied (Figure 3). Their correctness score for all the 
solutions they presented was 100.   
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We observed the following properties of the individual solution spaces for Ben and 
Beth: they were of the same sizes; they included the same number of concepts and 
theorems and contained two common solutions (solutions 1 and 3). However Ben's 
creativity score was much higher then Beth's one as a result of the originality of 
Solution 4 that was performed only by Ben, and his higher flexibility scores.  
Beth and Jo differed mainly in their fluency: Beth gave 3 solutions and Jo only 2. 
Since their solutions had similar flexibility and originality scores their creativity 
scores are proportional to their fluency scores. 
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1 1  10 0.1 1 
3 1  1 0.1 0.1 

Scores 
per 
solution 4 3 

  
 10 10 100 

Ben 

Final    50 3   303.3 
2 1  10 0.1 1 
3 1  1 0.1 0.1 

Scores 
per 
solution 1 1 

  
 1 0.1 0.1 

Beth 

Final    50 3   3.6 

3 1  10 0.1 1 Scores 
per 
solution 1 1 

  
 1 0.1 0.1 

Jo 

Final    30 2   2.2 

Figure 4:  Evaluation of the solutions on the task for three students  
Concluding remarks 
MSTs are presented in this paper as a research tool for the analysis of students' 
mathematical knowledge and creativity. The tasks are further used in the ongoing 
study in order to examine their effectiveness as a didactical tool. The larger study 
will perform a comparative analysis of students' knowledge and creativity along 
employment of MST in geometry classroom on the regular basis. The scoring 
scheme presented herein can be considered as an upgrading of the scoring scheme 
suggested by Leikin and Lev (2007). Correspondingly we suggest that the scoring 
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scheme presented herein can be used for examination of individual differences in 
students' mathematical creativity and students' mathematical knowledge in different 
fields. We are also interested in employment of this tool for the analysis of the 
effectiveness of different types of mathematical classes in the development of 
students' mathematical knowledge and creativity. 
Reference 
Dreyfus, T. & Eisenberg, T. (1986). On the Aesthetics of Mathematical Thought. 

For the Learning of Mathematics, 6, 2-10. 

Ervynck, G. (1991). Mathematical Creativity. In D. Tall (Ed.), Advanced 
Mathematical Thinking (pp. 42-53). Dordrecht, Netherlands: Kluwer.  

Hanna, G. (1996). The ongoing value of proof. Paper presented at the PME 20. 
Valencia, Spain. Retrieved  on January 22, 2007, from 
http://fcis.oise.utoronto.ca/~ghanna/pme96prf.html  

Herbst, P. & Brach, C. (2006). Proving and doing proofs in high school geometry 
classes: What is it that is going on for students? Cognition and Instruction, 
24, 73–122.  

Hiebert, J. & Carpenter, T. P. (1992).  Learning and Teaching with Understanding. 
In D. A. Ggrouws (Ed.), Handbook for Research on Mathematics Teaching 
and Learning (pp. 65-97). New York, NY: Macmillan. 

Krutetskii, V. A. (1976). The psychology of mathematical abilities in 
schoolchildren. J. Kilpatrick and I. Wirszup (Eds.). Chicago: The University 
of Chicago Press. 

Leikin, R. (forthcoming). Bridging research and theory in mathematics education 
with research and theory in creativity and giftedness. In R. Leikin, A. 
Berman & B. Koichu (Eds.), Creativity in Mathematics and the Education of 
Gifted Students. Sense. 

Leikin, R. & Lev, M.  (2007). Multiple solution tasks as a magnifying glass for 
observation of mathematical creativity. In the Proceedings of the 31st 
International Conference for the Psychology of Mathematics Education. 

Leikin, R., & Levav-Waynberg, A. (2007). Exploring mathematics teacher 
knowledge to explain the gap between theory-based recommendations and 
school practice in the use of connecting tasks. Educational Studies in 
Mathematics, 66, 349-371.  

Leikin, R. (2007). Habits of mind associated with advanced mathematical thinking 
and solution spaces of mathematical tasks. The Fifth Conference of the 
European Society for Research in Mathematics Education - CERME-5 

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 784



Leikin, R., Levav-Waynberg, A., Gurevich, I, & Mednikov, L. (2006). 

Implementation of multiple solution connecting tasks: Do students’ attitudes 

support teachers’ reluctance? Focus on Learning Problems in Mathematics, 

28, 1-22. 

Levav-Waynberg, A. (in progress). Solving geometry problems in different ways to 
promote the development of geometrical knowledge. Doctoral study 
supervised by R. Leikin. University of Haifa.        

National Council of Teachers of Mathematics (2000). (NCTM). Principles and 

standards for school mathematics. Reston, VA. 

Polya, G. (1973). How to solve it; A New Aspect of mathematical Method, Princeton 

University Press. 

Polya G. (1981). Mathematical discovery: On understanding, learning and teaching 

problem solving. New York: Wiley.  

Schoenfeld, A.H. (1988). When good teaching leads to bad results: The disasters of 

"well-taught" mathematics courses. Educational Psychologist, 23, 145-166. 

Schoenfeld, H. A. (1994).What do we know about mathematics curricula? Journal 

of Mathematical Behaviour, 13, 55-80. 

Sierpinska, A. (1994). Understanding in mathematics. Washington, DC:   Falmer.  
Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical 

problem solving and problem posing. ZDM-Zentralblatt fuer Didaktik der 
Mathematik , 3, 75-80. 

Skemp, R. R. (1987). The psychology of learning mathematics. Hillsdale, NJ: 
Lawrence Erlbaum.  

Torrance, E. P. (1974). The Torrance Tests of Creative Thinking. Technical-norms 
Manual. Benseville, IL: Scholastic Testing Services. 

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological 
processes. Cambridge, MA: Harvard University Press. Published originally 
in Russian in 1930. 

Zazkis, R. & Leikin, R. (2008). Exemplifying definitions: Example generation for 
the analysis of mathematics knowledge. Educational Studies in Mathematics, 
69, 131-148.  

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 785



 

THE DRAG-MODE IN THREE DIMENSIONAL DYNAMIC 
GEOMETRY ENVIRONMENTS – TWO STUDIES 

Mathias Hattermann 
University of Giessen, Germany 

Dynamic Geometry Environments (DGEs) in 2D are one of the well researched top-
ics in mathematics education. DGEs for 3D-environments (Archimedes Geo3D and 
Cabri 3D) were designed in Germany and France. In a first study we could show that 
pre-service teachers with previous knowledge in 2D-systems prefer to work with a 
real model of a cube instead of the 3D-system to solve certain problems. Furthermore 
we could find out that previous knowledge in 2D-systems seems to be insufficient to 
handle the drag-mode in an appropriate way in 3D-environments. In a second study 
we introduced the students to the special software before the investigation and distin-
guished different dragging modalities during the solution processes of two tasks.  

 THEORETICAL FRAMEWORK 
During the last three decades, several 2D-Dynamic Geometry Environments (DGEs) 
have been created to enrich and further the learning process in the mathematics class-
room. The most popular DGEs are Cabri-géomètre, GEOLOG, Geometer’s Sketch-
pad, Geometry Inventor, Geometric Supposer and Thales. In Germany, Euklid-
DynaGeo, Cinderella, GeoGebra, Geonext and Zirkel-und-Lineal are popular, with 
Euklid-DynaGeo being the most widespread software in German schools. DGEs are 
powerful tools, in which the user is able to exactly construct geometrically, discover 
dependencies, develop or refute conjectures or to get ideas for proofs.  
DGEs are characterised by three central properties: the ”drag-mode”, the functional-
ity ”locus of points” and the ability to construct ”macros”. The drag-mode is the most 
important feature available in these environments, because it allows to introduce 
movement into static Euclidean Geometry (Sträßer 2002). It is possible to drag basic 
points (points which are neither intersection points nor points with given coordi-
nates). During this dragging process, the construction is updated, according to the 
construction commands which were used in the drawing. To the user, it looks as if the 
drawing is respecting the laws of geometry while the dragging process is in progress. 
2D-DGEs are one of the best researched topics in mathematics education and espe-
cially within the PME-group (Laborde et al. 2006). For example, we find research on 
”DGE and the move from the spatial to the theoretical” (Arzarello et al. 1998, 2002) 
or ”construction tasks” (Soury-Lavergne 1998). Noss (1994) has shown that begin-
ners have problems to construct drawings, which are resistant to the drag-mode and it 
is reported that for pupils there exist two separate worlds, the theoretical one and the 
world of the computer. ”The notion of dependency and functional relationship” 
(Hoyles 1998 and Jones 1996) is another interesting theme and it has been shown that 
pupils have heavy problems in understanding the notion of dependency. They have to 
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be encouraged to use the drag-mode to support the understanding of the spatial-
graphical and the theoretical level, serving as a tool for externalising the notion of 
dependency. Several researchers showed that students do not use the drag-mode 
spontaneously and they have to be encouraged to do it. Most of the students are afraid 
to destroy the construction by using the drag-mode and they do not like to use the 
drag-mode on a wide zone (Rolet 1996 and Sinclair 2003). Arzarello and his group 
elaborated a hierarchy of several dragging modalities, which were linked to ”ascend-
ing” and ”descending” processes and reveal students’ cognitive shifts from the per-
ceptual level to the theoretical one (Arzarello 1998, 2002 and Olivero 2002). There is 
a great variety and number of research reports concerning the use of the drag-mode in 
proving and justifying processes (for example Jones 2000 and Mariotti 2000). Other 
fields of study were ”the design of tasks” (Laborde 2001), ”the role of feedback” 
(Hadas 2000) and ”the use of geometry technology by teachers” (Noss, Hoyles 1996). 

 THE FIRST STUDY IN 2007 
In the following we will give a brief summary of the research design and the results 
of our first study. For details see Hattermann, 2008. In July 2007, 15 pre-service 
teachers with previous knowledge in Euklid DynaGeo (2D-DGE) took part in our in-
vestigation. Some groups worked with Archimedes Geo 3D and others with Cabri 
3D, their actions on the screen and their discussions and interactions were recorded 
by a screen-recording software called “Camtasia” and a webcam. We used a qualita-
tive approach to get ideas about students’ behaviour in 3D-DGEs. Some important 
research questions were the following: 

• Do the students use spatial constructions like spheres or do they prefer ele-
ments from plane geometry? (Task 1) 

• What are the preferred tools to work with (paper and pencil, real model, imagi-
nation, DGE) to work with? (Task 2) 

• Do students use the drag-mode to validate a construction and to find solutions 
to problems? (Task 1 and 2) 

• How do participants behave in 3D-environments and how do they use the drag-
mode? (Task 1 and 2) 

Task 1 and Results 
The first task was: “Construct a cube without using the existing macro!” Five of 
seven groups constructed the cube. The Cabri groups needed between 20 and 25 min-
utes to construct the cube, whereas the Archimedes groups needed about 40 minutes. 
Different groupes tried to utilise transformations as reflections or rotations. While the 
realisation of a reflection is quite easy in Cabri, rotations seem not to be easy to han-
dle without any instructions. In the Archimedes environment students had problems 
with every transformation. The majority of the students used the drag-mode to vali-
date their construction only on demand. This result is comparable to the results ob-
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tained by Rolet and Sinclair who worked with school children in 2D-environments. 
Our probands preferred to measure several segments of the cube instead of dragging a 
basic point. During the construction, elements from plane geometry (circles, seg-
ments, straight lines) were preferred. Some groups used spheres to construct intersec-
tion points or to construct equidistant segments, but the majority of the groups 
worked with circles. 
 Task 2 and Results 
The second task was: “A student affirms: The slice plane between a cube and a plane 
can be: 

• an equilateral triangle 

• an isosceles triangle 

• a right-angled isosceles triangle 

• a regular hexagon. 
Construct (with the help of the function “cube”) a cube, check the student’s affirma-
tions and justify your results!” 
Every group tried to find validations for their conjectures with the help of the real 
model, the utilisation of the real model prevailed the use of the computer environ-
ment. Students preferred ”the old strategy” to examine the cube and to try to imagine 
the intersection figure. The software was used to validate the conjectures, which were 
mostly generated outside the software environment. The students defined a plane with 
the help of three fixed points, so that no dragging was possible. Furthermore, the 
drag-mode was not understood and it is not sure, if these students did not understand 
it in the 2D-case or if they could not negotiate it to the 3D-environments. The possi-
bilities of the drag-mode were not understandable to most students. They did not use 
the drag-mode in an expected manner (to use draggable points on an edge of the cube 
to define the intersection plane and to drag it to scrutinise different intersection fig-
ures). The approach of one group could illustrate this result: The students defined 
many fixed points on every edge of the cube and defined a plane with the help of 
three points. After verification, they deleted the plane and constructed another one 
with the help of other points. Only in exceptional cases the drag-mode was used and 
more often than not in a manner that a controlled dragging of the plane was impossi-
ble, which is the case when students used three arbitrary points in space to define the 
intersection plane. Students’ statements support the assertion that the “drag-mode” 
was not understood and previous knowledge in 2D seems to be insufficient to handle 
3D-systems! 
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 THE SECOND STUDY IN 2008 
 Methodology 
Our second study took place in February 2008 at the University of Giessen and 15 
pre-service teacher students participated in it. The participants had previous knowl-
edge in Euklid DynaGeo (the most widespread 2D-DGE in Germany), but their ex-
periences with DGEs were less than those from students who participated in our first 
study, because of changes concerning the content of different lectures following new 
study regulations. There were seven groups (six groups of two students and one 
group of three students). Three groups worked with Archimedes Geo3D while four 
groups utilised Cabri 3D to solve the given tasks. Each group worked in a separate 
room, the actions on the screen were recorded by utilising the screen-recording soft-
ware “Camtasia”. Furthermore, a webcam and a microphone were used to record stu-
dents’ voices and interactions. 
In our second study we tried to create an environment in which we could observe dif-
ferent dragging modalities. Due to the results of our first study we opted for an ap-
proach with a preparation session in which students were introduced to the special 
software environment and were encouraged to use the drag-mode. Both groups were 
taught in: 

• dragging basic points in 3D-space in the special software environment with the 
help of the keyboard 

• the distinction between basic points, semi-draggable points and fixed points 

• the construction of a midpoint of two points 

• the construction of a “perpendicular plane” to a straight line through a given 
point beyond the straight line  

• the construction of a “perpendicular line” in the x-y-plane to a given straight 
line in the x-y-plane through a given point , beyond the straight line 

• in the construction of a circle in an arbitrary plane, devoid of the x-y-plane, 
with a given centre and through a new point on the plane  

• in reflecting the circle on an arbitrary point devoid of the circle’s centre 

• in constructing a plane which contains a given straight line 

• in constructing a plane with the help of three points in such a way that one of 
these points can be dragged on a straight line 

Archimedes-groups were especially introduced to the utilisation of transformations 
which is quite complicated in this environment. After the first introduction students 
were urged to solve five task which forced students to use the drag-mode. Here, we 
followed suggestions from the Centre informatique pédagogique (CIP 1996) for 2D-
environments and adapted the ideas to our 3D-environment. There were five files and 
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every file contained a special task. Every task consisted of a body and one or several 
yellow points which had been constructed by the researchers before. The task was to 
find hypotheses concerning the construction of the yellow point(s) by dragging a spe-
cial point which was marked in blue colour. With the help of these preparation tasks, 
we intended to weaken students’ constraints to use the drag-mode and to encourage 
them. Because of the domination of the real model compared to the software envi-
ronment in our first study, we decided to forbid paper and pencil and not to provide a 
real model of the cube. 
In our preparation session, we tried to provide students with competencies to solve 
the tasks which were given in our study without giving them exact hints. So we 
broached the issue of constructing a perpendicular line to a straight line through a 
given point on a special plane without mentioning that this construction could be use-
ful to construct a cube. For another example, students had to construct a plane in such 
a way that one point of this plane could be dragged on a straight line. The idea behind 
was to show students how to construct a “draggable plane” without telling them that 
it could be an appropriate way to scrutinise different intersection figures of a plane 
and another body by using three defining points of the plane on appropriate segments 
of the body, which seems to be a reasonable way to solve our second task in the 
study.  
 Research questions 
First of all we are interested in the general behaviour of our students in a 3D-
environment; especially we looked for differences in students’ behaviour during the 
solution process of different tasks compared to the first group in July 2007 which had 
no preparation session. Are there important differences among the two DGEs? Be-
cause of the importance of the drag-mode in DGEs, we want to know more about the 
utilisation of it, especially we are interested in different dragging modalities in 3D-
environments. Do students use the drag-mode to validate their construction in task 
one (construction of a cube)? A validation of the construction with the help of the 
drag-mode assumed, how do they use it? Are they more “courageous” than their 
predecessors in July 2007 and do they use the drag-mode on a “wider zone”? What 
are the preferred tools to construct a cube? Is one preparation session enough to get 
students familiar with a 3D-DGE in such a way that elements like spheres or 3D-
reflections will be used to construct a cube or do constructions like circles (elements 
from planar geometry) prevail the construction? 
Do students use the drag-mode to discover different intersection figures of a cube and 
a plane or do they try to avoid the utilisation of the drag-mode in task two? Is it pos-
sible to identify different “ways of dragging”? What solving strategies are preferred 
by students who do not possess neither a real model of a cube nor a paper and pencil 
environment?     
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 Task one and Results 
We used the same task as in our first study in July 2007:”Construct a cube without 
using the existing macro!” 
Every group constructed the cube. The Cabri-groups needed 17, 19, 26 and 41 min-
utes for the construction, whereas the Archimedes-groups needed 34, 37 and 45 min-
utes. Furthermore every group utilised the drag-mode to validate their construction 
and two Cabri-groups did it in a “courageous way” so to say, they used it on a wider 
zone. One Archimedes-Group was very careful by dragging basic points. Every group 
was very happy by observing the invariance of the constructed cube under dragging 
and jubilation and pleasure were recognisable in nearly every group. This fact shows 
that dragging can motivate and emotionally affect students which underlines the im-
portance of this feature. 
By comparing the periods of construction it seems as if Cabri-Groups work faster. In 
our first study we came to the same statement and argued that one reason for this 
could be the “base plane (x-y-plane)” which exists in Cabri. In Archimedes this plane 
has to be constructed first. We can’t support this hypothesis with our actual data, be-
cause during the preparation session the construction of the x-y-plane in Archimedes 
was mentioned and every Archimedes-group had no problems to construct it in a 
short time not exceeding 3 minutes. 
No group tried to construct the cube with the help of spheres, only circles, planes and 
perpendicular lines were used to construct cube vertexes. An explanation for this re-
sult lies in the preparation session, in which circles, but no spheres were explicitly 
mentioned. 
One Archimedes-group utilised reflections on a plane and reflections on a straight to 
construct cube vertexes. One Cabri-group utilised the function of a parallel plane to a 
given plane but furthermore no reflections were used by students. In our first study no 
Archimedes-group used reflections to construct the cube. Due to the fact that “trans-
formations” are not easy to handle without instructions, this fact was not surprising to 
us. After an introduction in defining and utilising transformations in Archimedes, one 
of three groups used “reflections”, but the size of the sample seems to be too small to 
interpret this fact in more detail. 
Besides we observed students who had problems with “parent-child-relations” (see 
also Talmon 2004). Several situations occurred, which prove that dependencies of 
construction objects are not understood completely. Some groups did not understand 
that objects disappear by deleting an object on which they depend on. 
Furthermore we could identify several dragging modalities in 3D-environments. Stu-
dents used the drag-mode in our first task to 

• validate the construction at the end of the construction process. 
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• see that there are only two draggable points (the points that define the first 
edge of the cube) and to see that the other points are fixed. 

• find out the function of a semi-draggable point on the edge of the cube that had 
been constructed before. (Students forgot for what reason they had it con-
structed) 

• adapt the length of a segment to the measure of the first edge. (students did not 
really construct a cube in this attempt, they created a cube which was not in-
variant under dragging) 

• find out more about the degrees of freedom of draggable points, for instance to 
scrutinise if points are draggable on a plane or only on a straight line. 

• find an error in the construction. (Actually the construction was correct, only 
one point was wrong and this fact was discovered by dragging) 

 Task two and Results 
The second task was changed compared to the version used in July 2007. Task two 
was the following: “Construct with the help of the function “cube” a cube and try to 
find by experiment all Polygons (n = 3, 4... n = number of vertexes) which exist as 
intersection figures between the cube and a plane.” The second task was changed 
slightly in comparison to the first study, because we intended to further the need for 
the utilisation of the drag-mode. In the first study we gave four intersection figures 
and asked students to confirm or refute our statements, whereas the assignment is 
more open in our second study. We hoped that trying to discover new intersection 
figures would motivate students and moreover we tried to create an environment in 
which dragging could help students to find solutions. Finally we intended to observe 
and distinguish different “ways of dragging” during the solution process. 
Except of one group, everybody found the equilateral triangle and the isosceles trian-
gle as an intersection figure. Approximately the half of the participants mentioned an 
arbitrary triangle as intersection figure, whereas only one group could find a paral-
lelogram. The rectangle and the square were the easiest figures which were found by 
every group. Half of the groups found the trapezoid as intersection figure, whereas 
the other participants found it was well, but did not identify this quadrilateral as a 
trapezoid. Nobody looked for an isosceles trapezoid. Three groups found a pentagon, 
four groups found a hexagon and four groups found the regular hexagon. There were 
groups that found the hexagon and not the regular hexagon and vice versa. 
During the solution process we observed different dragging modalities. Students used 
the drag-mode by 

• defining the intersection plane by one point on an edge of the cube and two 
vertexes. 
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• choosing two points in a Cabri-environment to define the plane (now a plane 
appears) and to observe the behaviour of this plane by moving the cursor on 
the screen. (a special type of dragging only available in Cabri-environments) 

• defining three points on different edges of the cube to define the plane. 

• using three arbitrary points in space to define the intersection plane. 

• defining one draggable point on a straight line that is defined by two vertexes 
of the cube and to use two other points in space to define the plane. 

Students used the drag-mode to: 

• find out the function of a special point which had been constructed before. (a 
point was used to define a plane for example) 

• vary the volume of the cube so that the intersection points between the cube 
and the plane become visible (which is not always the case). 

• identify new intersection figures. 

• get an idea how to construct the intersection figure afterwards with the help of 
fixed points to define the plane. 

• identify more special figures/more general intersection figures from an existent 
figure. (find an equilateral triangle from an arbitrary triangle or vice versa) 

• scrutinise if there are intersection figures with more than 4 vertexes. (with the 
special type of dragging in Cabri) 

• move the cube, instead of varying the plane, to scrutinise different intersection 
figures. 

• identify draggable and non draggable points. 
It is really worth mentioning that we could observe happiness in every group by real-
ising different intersection figures with the help of the drag-mode. “Wow” or “that’s 
really great” are only two short examples that underline our affirmation. 
 Conclusion 
We succeeded in our second study to get the probands more familiar with the special 
DGE and to observe different dragging modalities in task one and two. There are still 
situations in which students utilised the drag-mode very careful and not on a wider 
zone, but the majority of our participants utilised the drag-mode to validate and to 
discover in a “courageous” manner without hesitation. So we claim that it is possible 
to prepare students in an appropriate time to use the drag-mode in 3D-systems and to 
encourage them.  
For a classification of different dragging modalities it will be interesting to categorise 
them theoretically and to analyse the “instrumental genesis” of the drag-mode accord-
ing to Rabardel’s theory (Rabardel 1995). It will be an exciting task for further re-
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search to observe the progress of the utilisation of the drag-mode. It should be possi-
ble to define different theoretical stages in the utilisation of the drag-mode from a 
“beginner’s stage” which will be characterised by nearly no dragging or careful drag-
ging up to an “expert’s stage”. 

 REFERENCES 
Arzarello, F., Micheletti, C., Olivero, F. & Robutti, O. (1998). Dragging in Cabri and 

Modalities of Transition from Conjectures to Proofs in Geometry. In A.Olivier, K. 
Newstead (Eds.), Proceedings of the 22nd Psychology for Mathematics Education 
International Conference (Vol.2, pp. 32-39). South Africa: Stellenbosch.  

Arzarello, F., Olivero, F., Paola, D. & Robutti, O. (2002). A cognitive analysis of 
dragging practices in Cabri environments. Zentralblatt für Didaktik der Mathema-
tik, 34(3), 66-72.  

Centre informatique pédagogique (CIP) (1996). Apprivoiser la géométrie avec CA-
BRI-GÉOMÈTRE (pp. 139-208). Genf, Suisse: Centre informatique pédagogique.  

Hadas, N., Hershkowitz, R. & Schwarz, B. (2000). The role of contradiction and un-
certainty in promoting the need to prove in dynamic geometry environments. Edu-
cational studies in Mathematics, 44(1-3),127-150. 

Hattermann, Mathias (2008): The dragging process in three dimensional dynamic ge-
ometry environments (DGE). In: Figueras, Olimpia; Cortina, José Luis; Alatorre, 
Silvia; Rojano, Teresa; Sepúlveda, Armando (Hg.): Proceedings of the Joint Meet-
ing of PME 32 and PME-NA XXX (Vol.3, pp.129-136). Mexico: Cinvestav-
UMSNH.  

Hoyles, C. (1998). A culture of proving in school mathematics. In D. Tinsley & D. 
Johnson (Eds.), Information and Communication Technologies in School Mathe-
matics (pp. 169-181). London: Chapman and Hall.  

Jones, K. (1996). Coming to know about dependency within a dynamic geometry en-
vironment. In L. Puig & A. Gutierrez (Eds.), Proceedings of the 24th Conference of 
the International Group for the Psychology of Mathematics Education (Vol.3, pp. 
145-151). Spain: University of Valencia.  

Jones, K. (2000). Providing a foundation for deductive reasoning: student’s interpre-
tations when using dynamic geometry software and their evolving mathematical 
explanations. Educational studies in Mathematics, 44(1-3), 55-85.  

Laborde, C. (2001). Integration of technology in the design of geometry tasks with 
cabri-geometry. International Journal of Computers for Mathematical Learning, 6, 
283-317.  

Laborde, C., Kynigos, C., Hollebrands, K., & Strässer, R. (2006). Teaching and 
Learning Geometry with Technology. In A. Gutierrez & P. Boero (Eds.), Hand-

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 794



 
book of Research on the Psychology of Mathematics Education (pp. 275-304). Rot-
terdam: Sense.  

Mariotti, M.A. (2000). Introduction to proof: the mediation of a dynamic software 
environment. Educational Studies in Mathematics, 44(1-3), 25-53.  

Noss, R., Hoyles, C., Healy, L., & Hoelzl, R. (1994). Constructing meanings for con-
structing: An exploratory study with Cabri-geometry. In J. da Ponte, J. Matos & 
J.Filipe, (Eds.), Proceedings of the 18th Conference of the International Group for 
the Psychology of Mathematics Education (Vol.3, pp. 360-367). Lisbon, Portugal: 
University of Lisbon.  

Noss, R., Hoyles, C. (1996). Windows on Mathematical Meanings. Dordrecht, The 
Netherlands: Kluwer Academic Publishers.  

Olivero, F. (2002). The proving process within a dynamic geometry environment 
(PhD thesis). Bristol, UK: University of Bristol, Graduate School of Education.  

Rabardel, P. (1995). Les hommes et la technologie. Approche cognitive des instru-
ments contemporains. Paris: Armand Colin. Translation to English (retrieved on 
24.9.2008 at http://ergoserv.psy.univ-paris8.fr/Site/default.asp?Act_group=1) 

Rolet, C. (1996). Dessin et figure en géométrie: analyse et conceptions de future en-
seignants dans le contexte Cabri-géomètre. (unpublished doctoral dissertation, 
University of Lyon1). Lyon, France.  

Sinclair, M. (2003). Some implications of the results of a case study for the design of 
pre-constructed dynamic geometry sketches and accompanying materials. Educa-
tional Studies in Mathematics, 52(3), 289-317.  

Soury-Lavergne S. (1998). Étayage et explication dans le préceptorat distant, le cas 
de TéléCabri (unpublished doctoral dissertation of University Joseph Fourier). 
Grenoble, France.  

Sträßer, R. (2002). Research on Dynamic Geometry Software (DGS) - an introduc-
tion. Zentralblatt für Didaktik der Mathematik, 34(3), 65. 

Talmon, V., & Yerushalmy, M. (2004). Understanding dynamic behavior: Parent-
child relations in Dynamic Geometry Environments. Educational Studies in Ma-
thematics, 57(1), 91–119. 

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 795



 

  

3D GEOMETRY AND LEARNING OF MATHEMATICAL 
REASONING 

 
Joris Mithalal, PhD student 

Laboratoire d’Informatique de Grenoble (LIG) 

Didactique, Informatique & Apprentissage des Mathématiques (DIAM) 
Université Joseph Fourier, Grenoble, France 

 
Teaching mathematical proof is a great issue of mathematics education, and 
geometry is a traditional context for it. Nevertheless, especially in plane geometry, 
the students often focus on the drawings. As they can see results, they don’t need to 
use neither axiomatic geometry nor formal proof. 
In this thesis work, we tried to analyse how space geometry situations could incite 
students to use axiomatic geometry. Using Duval’s distinctions between iconic and 
non-iconic visualization, we will discuss here of the potentialities of situations based 
on a 3D dynamic geometry software, and show a few experimental results.  
 
In mathematics education, resolving geometry problems is a usual way of teaching 
mathematical proof, and plane geometry is mainly used. 
Nevertheless the students often focus on the properties of drawings — which are 
physical objects — instead of figures — the theoretical ones. In this case they may 
solve geometry problems by using empirical solutions, based on their own action on 
the drawing: One can read the property on the drawing. That is why using drawings 
as regards plane geometry is very confusing for many of them: since they are able to 
see results on the drawings, since they can work easily on it, mathematical proof 
seems to be useless, and may appear as a didactical contract effect (Parzysz, 2006). 
On the contrary, in space geometry, it seems to be much harder for them to be certain 
of a visual noticing, and they may need new tools to study representations and to 
solve problems.  
Our hypothesis is that it is possible, with specific situations, to make the students use 
tools concerning theoretical objects: working on figures, using geometrical 
properties… In order to control these new tools, mathematical proof is a very useful 
process the students can use to solve problems. This is why we assume that 3D 
geometry could be very helpful for proof teaching. 
Nevertheless, formal proof is a complex process that not only involves hypothetico – 
deductive reasoning, but also (for instance) specific formal rules (Balacheff, 1999) 
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we will not study here. Therefore, we will only focus in this paper on the first 
hypothesis we mentioned.  
We will present here a preliminary study in order to illustrate and test our theoretical 
hypothesis. 

THEORETICAL FRAMEWORK 
Resolving problems of geometry  

As it is said in Parzysz (2006): 
The resolution of a problem of elementary geometry consists of the successive working 
with G1 and G2, focusing on the “figure”. The figure has a central part in the process: 
even if it is very helpful in order to make conjectures, it may be an obstacle to the 
demonstrating process, as the pupils don’t know how to use data because of the 
“obviousness of the visual phenomenon”. 

Parzysz refers to Houdement&Kuzniak’s geometrical paradigms, in so far as G1 is a 
“natural geometry” — where geometry and reality are merged — and G2 is a “natural 
axiomatic geometry”, an axiomatic model of the reality, based on hypothetico-
deductive rules (Houdement, Kuzniak, 2006). 
As we can see, demonstrating is really meaningful when working with both G1 and 
G2, but the sensitive experience may encourage the pupils to work only with G1. In 
order to describe more precisely what can be this sensitive experience, and the ways it 
is related to using — or not — G2, we chose to use the distinctions that Duval (2005) 
makes between the different functions of the drawing, and the different ways of 
seeing it. 
A first way of using representations is the iconic visualization: in this case the 
drawing is a true physical object, and its shape is a graphic icon that cannot be 
modified. All its properties are related to this shape, and so it seems to be very 
difficult to work on the constitutive parts of it — such as points, lines, etc. Then, the 
drawing does not represent the object that is studied, it is this object, and the results 
of geometrical activities inform on physical properties. 
The other way is the non-iconic visualization, where the figure is analysed as a 
theoretical object represented by the drawing, using three main processes: 
Instrumental deconstruction: in order to find how to build the representation with 
given instruments. 
Heuristic breaking down of the shapes: the shape is split up into subparts, as if it 
was a puzzle. 
Dimensional deconstruction: the figure is broken down into figural units — lower 
dimension units that figures are composed of —, and the links between these units are 
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the geometrical properties. It is an axiomatic reconstruction of the figures, based on 
hypothetico-deductive reasoning. 
These different possible ways of using the drawings lead us to two important 
consequences. 
On the one hand, using G2 makes no sense with only iconic visualization, as 
geometry problems concern nothing but the drawings to the student’s eyes. 
On the other hand, carrying out the dimensional deconstruction means isolating 
subparts of the drawing and, at the same time, describing how these subparts are 
linked: this last part has no sense when using only G1. Therefore this operation 
implies a more axiomatical point of view, and the figure — described by the 
dimensional deconstruction — is likely to be used. 
Finally, we assume that dimensional deconstruction would become an efficient tool if 
the iconic visualization weren’t reliable any longer, as the pupil would have to make 
up for the lack of information in order to solve geometry problems. Using graphic 
representations is much more complex in space geometry, and then it seems to be an 
appropriate environment for the teaching of axiomatic geometry. 
3D geometry 
Using physical representations is very different in space geometry: there are various 
ways of representing figures, such as models or plane projections, and each kind of 
representation has specific properties and constraints. As the physical models are too 
restricting — for instance, adding new lines is generally impossible, and constructing 
models takes much time —, cavalier perspective representations are generally used. 
Then, visual information is no longer reliable: for instance, it is impossible to know 
whether two lines intersect or not, or whether a point is on a plane, without further 
information. 
So in space geometry iconic visualization fails, and it is necessary to analyse the 
drawings in other ways. The problem is that using drawings is generally too difficult 
for the pupils. Chaachoua (1997) mentions that this involves the students’ 
interpretation, based on their mathematical and cultural knowledge. They have to 
break down the drawing into various components, so that they can imagine the shape 
of the object. In fact, they would have to carry out dimensional deconstruction before 
any visual exploration. Therefore they are unable to understand that iconic 
visualization is not sufficient to solve geometry problems, as they only think that they 
see nothing. 
Using 3D geometry computer environments may balance these difficulties, since the 
students could get more visual information, for instance by using various viewpoints 
as if the representations were models. It has to be noticed that, even in this kind of 
environment, visual information is usually not reliable, so that iconic visualization 
remains inadequate to solve geometry problems. 
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Hypothesis about Cabri 3D 
With Cabri 3D, the user can watch the representation as if they were models. It is 
possible to adjust viewing angles by turning around the scene, to look at the drawing 
from various viewpoints, and then to be more easily conscious of the visual issues. 
For instance, it becomes possible to see that a point belongs to a plan, when the point 
visually belongs to it. Actually the user can get visual information to determine the 
shape and some properties of the figures, but generally this information is not 
sufficient to carry out geometrical works. For instance, as the representations are not 
infinite in Cabri 3D, two secant lines could have no intersection point on the screen, 
then it would be impossible to determine visually whether these lines are secant or 
not. Some operations are almost impossible too, like moving a point to reach a given 
line with no other tools than visual perception. 
Then, the feedback from a Cabri 3D - based milieu — as described in Brousseau 
(1997) — may emphasize that, even if visual information is available, this 
information is partial. A Cabri3D drawing does not permit to see all the specificities 
of the object the student has to study – which is clearly not the drawing itself.  
It seems that a problem any student would have to deal with, when using Cabri3D, is 
“How can I get information from the drawing, and how may I use it in order to 
deduce information I cannot see, and solve geometry problems?”. We showed that 
there are two main kinds of answers: the iconic visualization based ones, and the non-
iconic visualization based ones.  
Our first hypothesis is that with Cabri 3D it is much easier for the students to get 
information about the drawings, and then to start a research process, even if they only 
use iconic visualization. This research process may evolve because of the dynamic 
geometry software properties of Cabri3D. 
 
Cabri 3D not only produces representations, it is a dynamic geometry software. In 
this way it is possible to use hard geometric constructions: these drawings are based 
on geometric properties, and keep it when the user drags a part of it. As an example, a 
hard square remains to be a square — with different size — when one of its vertexes 
is dragged. Therefore, the students may assume that the reason of simultaneous 
movements of figural units is the relation between them: if a point moves when 
another one is dragged, it may seem that they are linked, in a way that has to be 
elucidated by the students. 
We can guess that this point is stressed in 3D dynamic geometry situations, since 
other visual information is generally not reliable: one can be sure of the simultaneous 
movement of two figural units, even if it can be quite difficult to determine how these 
units are linked. These links are in fact invariant properties when points are dragged, 
and then direct results in Cabri3D of geometrical properties (Jahn, 1998). 
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Our second hypothesis is that with dynamic geometry it is possible to stress the 
inefficiency of iconic visualization, and to support experimental studies of the 
properties of the figure. Therefore dimensional deconstruction and axiomatic 
geometry would become very efficient tools for the students to design research 
processes, to study a given representation and to solve geometry problems. 
 
Nevertheless, these theoretical tools are not sufficient: any experimental work in 
Cabri 3D has to involve Cabri 3D’s tools. Therefore we have to study their role and 
the way they could interact with the theoretical ones. 
First, many tools are very linked to visual perception: changing viewpoint tools, 
drawing and measuring tools. If they are not used with other tools, there is no need 
for the student to control her/his work with G2. S/he can measure drawings, watch 
their shape and construct objects as soft, and not hard constructions. When a part of 
such a drawing is dragged, the shape changes and so do the geometric properties the 
user can see. Then the feedback from Cabri 3D invalidate this kind of construction to 
the user’s eyes (Laborde, Capponi, 1994). 
Secondly, other tools are more strongly linked to a theoretical control of the 
constructions: construction primitives — intersection, parallel, perpendicular, 
tetrahedron, etc. — and transformations. Even if using axiomatic geometry is not 
necessary to control the use of these tools, an empirical control may be very difficult 
in many situations (for instance, in order to use a transformation, the user generally 
has to choose the values of several arguments before any visual control). So using G2 
would become an economical way of controlling it. Furthermore, these tools would 
be very helpful for the process of instrumental deconstruction, as they are designed 
with axiomatic definitions. Actually, for this reason, instrumental and dimensional 
deconstructions would be very linked in this case. 
Eventually, we have to point out that the designer of a situation (teacher, 
researcher…) can choose the toolset available in Cabri 3D. This is a way for him to 
delete specific tools in order to design feedbacks. For instance, if the students have to 
construct hard squares, there is no feedback about the hardness of constructions when 
using the “square” tool. Therefore choosing the available toolset is often a very 
important choice for this didactical variable, to make strategies inefficient or 
impossible. 
Then, our third hypothesis is that in some specific situations, with a specific Cabri 3D 
toolset, it is possible to provoke a particular instrumental deconstruction, strongly 
linked to dimensional deconstruction. 
Research problem 
As a consequence of our theoretical framework, it is now possible to make the 
problem mentioned in the introduction clearer and more accurate: is it possible to 
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design adidactical situations with Cabri 3D that make iconic visualization inefficient 
and in which dimensional deconstruction can be a tool to analyse figures and solve 
problems?  Then we have to wonder whether using dimensional deconstruction could 
be liable to make the students using G2. 
The following example is a situation we designed in order to test our hypothesis, in 
which a student has to analyse a Cabri3D-drawing in order to explain to another 
student how to construct the same object with Cabri 3D. 

AN EXAMPLE OF A RECONSTRUCTION SITUATION 
Methodology 
We used a qualitative approach to analyse the students dealing with this task. We 
refered to our theoretical study in order to distinguish different strategies they were 
likely to use. It was possible to foresee how they would analyse the drawings, as 
shapes or as geometrical constructions... Moreover we had to analyse how they 
design their construction strategies. For instance, anticipating the properties of the 
object constructed would reveal G2-based strategies. We will only detail below the 
three main kind of strategies we distinguished. 
In order to analyse the students’ work, we used a screen-recorder software 
(Camtasia), microphones, and a video camera. Then we could observe at the same 
time their dialog, their gestures (for instance to describe physical objects), and the 
way they used Cabri 3D. 
The situation. 

This situation involves 10th French graders (15 to 16 year-old students), working in 
pairs. Each student works on a computer. The first one (S1) has to analyse a model, a 
Cabri3D-drawing, and describe orally to the second student (S2) a way of 
reconstructing it. Using S2’s computer is forbidden to S1, and S2 cannot see S1’s 
screen. 

There are four distinct phases, from the simple to the complex one (see Fig.1): first a 
prism with a rhombus as a base, and then are successively added its symmetrical with 
respect to a vertex, an edge and a lateral face. All these prisms are constructed from 
three directly movable points: a and b are in the base plane, and c is on the line 
perpendicular to the base plane at point O (the centre of the bottom face of the prism). 
All the other points are constructed using symmetries, so that the constructions are 
robust ones. 

S2 is given a file with the three points, a, b and c, and the two students have to 
validate their constructions by themselves. The only condition is that the behaviour of 
the new object has to be the same as the model’s one when point a, b or c are moved. 
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S2 doesn’t see the prism and the polyhedron tool is not available, so it is much harder 
to solve empirically the three last problems by constructing symmetricals of the first 
prism. 

 

Fig. 1: Figure to analyse and reproduce in phase 4 (in previous phase, parts of the 
figure have been reconstructed)  

 
Three strategies 

First, if they worked using only G1, they would analyse the shapes and sizes of the 
models, and try to reproduce it by creating points and dragging it to the right 
positions. This is very difficult in a 3D space represented in 2D, and we can guess 
that construction primitives may be used as stands on which a visual control of the 
positions is possible. This is a basic strategy, and it fails in Cabri 3D whereas it 
wouldn’t in a paper/pencil environment. We call it R1. 

The second strategy (R2) is based on the use of construction primitives controlled by 
knowledge about “basis configurations” (Robert, 1998) learnt before. For instance, 
point O may be recognized as the centre of symmetry of the bottom rhombus not 
because a and a’ seem to be symmetrical with respect to it, but because the student 
already know that the “centre” of a rhombus is its centre of symmetry. Therefore the 
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students may use locally plane transformations (on some planes). But in space, as 
they have no previous knowledge about symmetry in a prism, their strategy may be 
similar to R1. We expect that in this case, in the model analysis phase and in the 
interaction with S2 phase, S1 may focus at the same time on geometric properties and 
on size information. This strategy does not necessarily require dimensional 
deconstruction. The result of it is a partial failure, as the dynamic properties exist in 
planes, but not in space. 

The third strategy (R3) may be based on transformations. In this case, we assume that 
the student use axiomatic geometry and dimensional deconstruction, then we can 
guess that their analysis would focus on invariant properties when they drag points, 
and their reconstruction strategy would be designed in order to reproduce these 
properties. 

Experimental results 
We experimented this task with three pairs of 10th French graders, who had been just 
introduced to Cabri 3D before. Our following analyse will mainly focus on the 
“reconstruction phases”, and not on S1’s analysis of the drawings.  
First of all, it seems that the students could get information about the drawings by 
manipulating it. They were able to determine, visually, shapes and basic physical 
properties, and to try to find a solution to the problem. For instance, the Group 3 
students only used iconic visualization, and they could construct the prism shape – 
but a soft construction, based on the length of the edges. They tried something, and 
their failure was not the consequence of the too high complexity but was linked to the 
expected properties: some points “don’t move”. 
Secondly, all the students realized that iconic visualization was not sufficient to carry 
out the expected construction. We have to distinguish to main cases. 
Groups 1 and 2 first used only R1, but they realised that this strategy was no longer 
efficient in 3D geometry. As they were able to use – more or less easily – non-iconic 
visualisation, they tried other strategies and could reproduce the dynamic properties. 
It has to be noticed that they used R2 and R3 because it was easier that R1, and not in 
order to make hard constructions (even if this was a consequence). 
On the contrary, at the beginning, Group 3 students were not able to use anything but 
iconic visualisation. They constructed the first prism with R1, which led them to a 
failure: the points “didn't move”. Iconic visualisation couldn’t help them to analyse 
this:  

S1: Try to make the point move 

S2: I can’t, there is no line [on which the point could move] 
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 Then they started to use iconic and non-iconic visualisation at the same time, 
depending on their aim. For instance, they first tried to make b', b1 and b1' while 
dragging b, but didn't care about a, a'... They kept constructing a, a', a1, etc., by 
measuring lengths, but constructed b1 and b1' by using geometrical properties, such as 
“parallel”, instead of adjusting positions. This second case underlines that using non-
iconic visualisation can be strongly linked to the dynamic properties of the drawing. 
Eventually, we have to point out that the students didn’t use easily dimensional 
deconstruction, and then they first tried to use it as little as possible. For instance, it 
seemed to Group 2 students that ded’e’ and ed2’e2’d’ (see Fig. 1) were linked, and 
that (ed’) had something to do with this link: “a rotation”. They tried to use the tool 
without any further analysis (basic instrumental deconstruction), and couldn’t 
succeed. Then, they analysed more precisely the link, and discovered that they had to 
use “symmetry”. Actually, as instrumental deconstruction was not precise enough, 
thay used dimensional deconstruction in order to control more precisely the way they 
used the tools. 

CONCLUSION 

Finally, our experimental results have a global consistency with the three hypothesis 
we mentionned. 

The students used the representations as if they were models, and could get 
information from it. Even if they wanted to draw shapes, without any dynamical 
properties, they were able to get enough information by looking and measuring the 
models. Moreover, we could observe that, even to draw shapes, non-iconic 
visualization led them to more efficient strategies (Groups 1 and 2). 

Nevertheless, because of the dynamic geometry, this process was inefficient, and they 
had to find a way of reproducing dynamical effects. With this new research process, 
they had not only to use iconic visualization but to find something else. Depending on 
the students’ knowledge, most of them tried to use dimensional deconstruction and an 
axiomatical point of view, as the most efficient strategy – efficient for analysing, 
giving oral information, reconstructing, arguing... In every group, the strategies used 
by the students evolved and dimensional deconstruction was more and more 
involved, so that they were able to give an interpretation to dynamical effects. 

It seems that Cabri3D’s tools were very important in the evolution of strategies. 
Using of transformations appeared to be a way of solving the problems, but an 
empirical control was very difficult in most cases. Then, the students changed their 
strategies, and tried to find new ways of controlling it, by using dimensional 
deconstruction. 

Therefore, these results give us informations about our research question: iconic 
visualisation failed, and dimensional deconstruction was necessary to solve the 
problem. Moreover, even the weakest students started using dimensional 
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deconstruction, whereas they were unable to do so at the begining of the exercise. 
Then we could ask two new questions, more accurate. One the one hand, how did 
dimensional deconstruction appear, and how is it related both to the task and to 
instrumental deconstruction? On the other hand, we will have to study wether using 
dimensional deconstruction is liable to make the students use G2 in geometry, and not 
only in 3D geometry. 
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ABSTRACT

In this paper we present part of the analysis of a Teaching Model for the geometry of  
solids  of  an  initial  Education  Plan  for  elementary  school  teachers,  and  its  
implementation in the University School of Teaching of the Universitat de València,  
Spain.  We  have  focused  our  attention  on  how the  establishment  of  relationships  
among geometric concepts have been worked on. For this analysis we considered  
theoretical contents related to geometric contents (concepts, mathematical processes  
and different types of relationships). This study is part of a more extensive work that  
tried  to  elaborate  the  competent  conduct  features  for  a  teacher  teaching  solid 
geometry in elementary school.

PRESENTATION

This  work  is  part  of  a  more  extensive  research  project  which  uses  as  a 
methodological  framework  the  theory  of  the  “Modelos  Teóricos  Locales”  (MTL) 
(Local Theoretical Models) (Filloy, 1999). According to Filloy and col. (1999), to be 
able to take into account the complexity  of the phenomena that take place in the 
educative systems, the MTL incorporate several interrelated theoretical components: 
1) Competence Model; 2) Teaching Model; 3) Cognitive Processes Model, and 4) 
Communication Processes Model. Our work is focused on the first  component  in 
relation with the training process of elementary school teachers in the subject of solid 
geometry.

De Ponte and Chapman (2006) point out that this research line has given priority to 
the analysis of teachers knowledge or practice paying less attention to the analysis of 
the programs for their training. In our work we analyze a solid geometry training 
Program for  elementary  school  teachers  and its  putting into practice;  we want  to 
establish some elements for the Initial Competence Model (ICM) in relation with the 
training  of  elementary  education  teachers  in  the  geometry  of  solids.  In  previous 
papers we have presented elements of this competence model that show a competent 
conduct  for  teaching  mathematical  processes  related  with  describing,  classifying, 
generalizing  and  particularizing.  In  the  present  paper  we  focus  on  the  elements 
related to the establishment of relationships among geometrical contents.
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BACKGROUND AND FRAMEWORK

The analysis we present in this paper is part of a more extensive work -  González 
(2006)1-, which had the purpose of elaborating the elements for an ICM that can be 
used  as  a  reference  to  interpret  the  teaching  models  proposed  for  teaching  solid 
geometry in training programs for elementary school teachers. This work belongs to a 
project that aimed for the creation of a "Virtual Library”2 that could help to teachers' 
permanent education. 

In previous works (González and col. 2006, 2008; González, E. and Guillén, G. 2008) 
we have  presented  some  results  of  the  analysis.  To  group these  results  we have 
followed  the  distinction  made  by  Climent  and  Carrillo  (2003),  who  take  into 
consideration  teacher’s  knowledge  and  distinguish  as  different  components  the 
mathematical content knowledge (in our case contents  of  and  about geometry) and 
the knowledge of the subject for its teaching. 

In  previous  papers  above mentioned we refer  to  results  that  have  to  do with the 
contents  of  “solid  geometry”  related  to  mathematical  processes  of  classifying, 
describing, generalizing, and particularizing. We show how the attempt of organizing 
the surrounding objects  and their  construction,  by  means  of  different  procedures, 
provides very rich contexts to develop these mathematical processes. We also present 
some of the reflections encouraged by the teacher concerning the learning process of 
both children and teachers,  questions  having to  do with preparing the lesson,  are 
related  to  the  use  of  language,  or  the  way  to  respond  to  the  appearance  of 
misconceptions.

The observations we present in this paper belong to the first group of contents of and 
about geometry,  and complete  the study; these  observations  refer  to  relationships 
among geometric objects of the same and different dimension; that is, relationships 
among solids, among their elements or among plane and space elements.

As  we  advanced  in  the  presentation,  we  follow  the  Theory  of  the  MTL  as 
experimental  methodological  framework. We have commented that in this Theory 
four interrelated theoretical components can be distinguished. What differences each 
component  from the  others  is,  among  others,  the  phenomena  taken  into  account 

1 Work carried out to obtain the “Diploma de Estudios Avanzados” (Certificate of Avanced Studies) 
of the PhD program of Mathematics Education. Universitat de València, Spain.
2  Project  "Procesos  de  transferencia  de  resultados  de  investigación  al  aula:  el  caso  del  bajo 
rendimiento escolar en matemáticas".  Research project, cofinanced by the  Consejo Nacional de 
Ciencia  y  Tecnología  (CONACYT-G37301-S)  (Nacional  Council  for  Science  and Technology). 
México.

http://www.pernodis.com/ptria/index.htm. In the site dedicated to geometry, section  "Descubrir y 
matematizar a partir del mundo de las formas", chapter ¿Cómo enseñan otros? we present extracts 
of  the  class  sessions  with  the  corresponding  analysis 
(http://hipatia.matedu.cinvestav.mx/~descubrirymat/).
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regarding the concept subject of analysis. In this work in particular, the ICM includes 
elements of the knowledge of an ideal person, capable of carrying out tasks related to 
the teaching of solid geometry at elementary school level.  This is,  it  includes the 
elements  which  should  be  part  of  the  competent  conduct  of  elementary  school 
teachers when teaching the geometric topics regarding solids in their classes.  We 
have  already  pointed  out  that  the  elements  commented  in  this  work  refer  to  the 
establishment of relationships among geometric contents.

When we focus on solids, our theoretical framework is based on the studies made in 
Didactics of solid geometry  (Guillén, 1991, 1997; Guillén and Figueras, 2005), we 
continue  reorganizing  these  contents  as  referred  to:  a)  geometric  concepts,  b) 
mathematical processes (to analyze, to describe, to classify, to generalize, etc.), c) 
relations among geometric contents. When we studied how these geometric contents 
were  taught,  we  also  paid  attention  on  how the  skills  are  used  (to  construct,  to 
modify, to transform) to work the mathematical  processes indicated or to develop 
skills (to communicate and/or to represent forms). The reorganization of the school 
contents has leaded to organize the observations as related to the teaching/learning of 
concepts, of mathematical processes, or of the establishment of relationships among 
different geometric contents. The observations made are detailed in Guillén (1991, 
1997). These works take into account, on the one hand, relationships among solids 
and/or families of solids. These refer to inscription and duality relationships among 
families  of  solids,  to  composition  or  decomposition relationships,  or  to inclusion, 
exclusion  or  overlapping  relationships  among  different  classes  established  with 
different  classification  types  (hierarchic  partitions  or  classifications)  taking  into 
account several universes and criteria for classifying. On the other hand, we stand out 
the relationships among the  solids elements  that  can  be either  of  parallelism and 
perpendicularity  or  numerical  relationships  among  them.  Also  were  taken  into 
account  the  relationships  among  geometric  contents  of  several  dimensions  that 
emerge when solids truncate or  during the construction of models  parting from a 
plane surface. Moreover, attention has been paid to the establishment of relationships 
by analogy. In the work of González and Guillén (2006) the inclusion, exclusion or 
overlapping relationships among families of solids were studied. The rest of types of 
relationships  are  the  ones  that  have  been  taken  as  reference  to  organize  the 
observations that this report presents.

The studies above mentioned have been developed taking as a reference the works of 
Freudenthal (1973, 1983) and others, that have been carried out at the Freudenthal 
Institute (for example Treffers 1987). These works are the theoretical basis for our 
concepts over geometry and its teaching, over the relationships among the different 
geometric  contents,  and also  provides  us  with  information  to  organize  the  solids 
geometry teaching. In this framework one of the aims of geometry teaching is the 
development of mathematization through mathematical practice.

To carry out the analysis we have also taken as a reference other studies about the 
appropriate  contents  for  the  teachers  training  plans,  emphasizing  on the  different 
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contents that should be discussed on a reflective level (Shulman, 1986; Climent y 
Carrillo, 2003; De Ponte y Chapman, 2006; González et. al. 2006).

DATA COLLECTION AND ANALYSIS

To create the MCI, we analyzed the available literature related to the mathematical 
content analysis and observation of the learning process for mathematical processes 
and  the  literature  related  to  teachers’  education,  this  enabled  us  to  elaborate  the 
Theoretical Framework of the work and define the criteria used to analyze the design 
and  implementation  of   a  Teaching  Model  of  the  teacher  of  Teaching  with  an 
extensive experience in introducing to the study of geometry having as  a support 
solids geometry.

The  work  has  been  developed  in  several  stages.  In  the  first  one,  we  examine 
theoretical works of the research lines we mentioned in the previous section and the 
teachers'  training plan of the teacher who constitutes the study scope of our work 
(Guillen, 2000). In a second stage we analyzed the implementation of this training 
plan. 

The data for this experimental study was obtained during the 2005-2006 school year. 
We attended and took notes of 22 class sessions the training teacher dedicated to 
solid geometry during the course she gave to a group of students belonging to the 
foreign language specialty at the University School of Teaching of the Universitat de 
València (Spain). Each session lasted 50 minutes approximately.

To control all the information that emerged during the teaching, the sessions were 
recorded  in  video  and  audio.  These  recordings  were  transcribed  and  from them, 
together with the notes taken during the classes, were obtained the extracts to carry 
out the analysis. These were considered the essential element and were defined taking 
as a reference the theoretical analyses performed during the first stage. They could be 
a sentence or a set of sentences that not necessarily had to match the answers or 
individual interventions of the teacher or of the students.

These  extracts  were  organized  in  groups  as  it  follows:  i)  On  geometry  and  its 
teaching. Student and teacher; ii) On geometric contents; iii) How do some of those 
students learn? What for?; iv) The class planning; v) Interacting in the class and ... vi) 
What about language? In Gonzalez et al. (2006) we briefly detail observations related 
to each of them.

The school contents organization we carried out, mentioned in the previous section, 
show the  distinction  we  made  in  the  observations  we  included  in  group  ii).  We 
separated  them  as  follows:  ii.1)  relative  to  concepts  learning;  ii.2)  relative  to 
mathematical processes; ii.3) relative to the establishment of relationships. We have 
already mentioned that in the following section we will refer to group ii.3).

To analyze the corresponding extracts for the establishment of relationships we used, 
on one hand, the diagram presented by Olvera (2007) and showed in figure 1. This 
diagram was constructed starting from the characteristics  of  Van Hiele  levels  for 
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solid geometry determined in the study by Guillén (1997). On the other hand, in its 
organization the families of solids and polygons implicated and the relations among 
flat  geometric  objects  and space geometric  objects  were taken into account.  Also 
different  representations  of  the  solids  used  as  a  context  were  considered  and 
numerical relations were also underlined.

Figure 1

IMPLEMENTATION OF A TEACHING MODEL FOR SOLID GEOMETRY. 
OBSERVATIONS  RELATED  TO  THE  RELATIONSHIPS  AMONG  THE 
GEOMETRIC CONTENTS 

In Figure 1 we show how the observations of relationships among geometric contents 
during the implementation of the analyzed training plan are grouped. Following, we 
present some examples. 

Establishment of relationships

The observations that  we present  in  this  section  have been organized taking into 
account, on the one hand, the solid families used as a support to develop the activity. 
On the other one, that the context can also consist of the different representations of 
solids. It is also necessary to take into account that the relations established could also 
be numerical.

1. Relations of inscription and duality among regular polyhedrons. When numerical 
relations are exposed in a table as shown in Figure 2, in which the number of faces, 
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vertexes, edges, order of the vertexes and number of sides of the polygons of the 
faces  have  been  registered,  it  leads  to  the  establishment  of  a  wide  variety  of 
relationships.

For example, it  comes to express that the number of faces of the dodecahedron is 
equal to the number of vertexes of the icosahedron; or that the number of vertexes of 
the  octahedron  is  equal  to  the  number  of  faces  in  the  cube.  From this  type  of 
relationships, it can be concluded that some polyhedrons can be inscribed in others. 
For  example,  the  cube  can  be  inscribed  in  a  octahedron  in  such  a  way  that  the 
vertexes of the cube are in the center of the faces of the octahedron, or vice versa.

Figure 2 Octahedron inscribed in the cube

There are also relations established among elements of the 
dual  regular  polyhedrons  when  instead  of  considering 
models  of  pairs  of  dual  regular  polyhedrons  inscribed, 
compound models are considered, which are intersections 
of pairs of dual polyhedrons. For example, the cube and 
the octahedron.   

After  encouraging students  to  imagine  in  a  dynamic  way  how to  pass  from the 
inscribed model to the compound model when the size of the inscribed polyhedron is 
increased, the attention is focused on the fact that the edges of both polyhedrons cut 
perpendicularly at their midpoint.

2. Relations among regular polyhedrons and other solid families. 
When  trying  to  analyze  regular  polyhedrons,  they  have 
repeatedly  been  studied  in  relation  to  other  families.  For 
example, in the analysis of the icosahedron it is emphasized that 
it  can  be  seen,  on  the  one  hand,  as  the  composition  of  two 
pentagonal pyramids of regular faces and a pentagonal antiprism 
of regular faces or as the fitting of two caps that correspond, 
each  of  them,  to  a  pentagonal  bipyramid of  regular  faces,  in 
which one of the pyramids has been opened. 

3. Cylinders and Prisms. Cones and pyramids. Immersed in the 
situation of generating models with different procedures, in first 
place, the family of straight prisms was introduced through the 
truncation of a straight cylinder.

      

For  example,  questions  raise  such  as:  What  form  do  we  obtain  if  we  cut 
perpendicularly the base? How many cuts, perpendicular to the base, should be done 
for the circle of the base to turn into a 5-sided polygon? What does the cylindrical 
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surface turn into? How are the cylinders obtained with parallel to the base cuts? Can 
we also obtain oblique prisms?  And this problem extends to the establishment  of 
relations between cones and pyramids.

Likewise,  comparisons  among  naive  ideas  and  properties  of  both  families  are 
established. For example, it is pointed out that with parallel cuts to the bases in both 
families (cylinders and prisms) the shape of the sections is maintained (same form of 
the bases), and these cuts divide the corresponding solid into other solids with the 
same  form,  with  the  same  bases  as  the  original  one;  and,  when  adding  the 
corresponding heights, the original solid height is obtained. Immersed in this matter, 
it is concluded that some prisms can be inscribed in cylinders raising the question of 
which polygons can be inscribed in a circumference?

4. Comparing  cylinders  and  cones.  Prisms  and  pyramids.  When  considering  a 
dynamic transformation of one family into another, this transformation is profited to 
establish relations among the elements of the families of implied solids. For example, 
when the attention is focused on the transition from a prism into a pyramid, one of the 
bases  of  the  prism  is  reduced  to  a  point  in  the  pyramid  and  it  results  in  the 
transformation of the lateral faces of the prism into triangles, or that the number of 
faces in prisms is reduced by one in the number of faces of pyramids, etc.

5. Families of solids and flat shapes. When we focus on counting the elements of 
regular polyhedrons paying attention to their layout in space, relations are established 
among this layout and the form of the cuts sections equidistant from opposite faces, 
vertices  or  edges.  The study is  completed  with the determination  of  the different 
types of planes of symmetry and axes of rotation of each regular polyhedron and the 
number of planes and axes of each type.

In  a  context  of  truncation  in  cylinders,  cones,  spheres,  prisms  and  pyramids  the 
relations among the direction of the cut and the form of the sections are established. 
The process is also considered in a dynamic way; that is, it starts with the observation 
of a section shape and this is compared with the other sections obtained by parallel 
cuttings done to the original.

6. Different representations of the solids as a starting point. This situation enables 
setting relations among different representations or among the corresponding models 
and  their  representation.  For  example,  when  disassembling  the  straight  cylinder 
model, the cylinder edges are related to the sides of the rectangle in the flat pattern, 
and to the length of the circumferences of the bases.

When comparing a model with its flat pattern, problems arise such as the following: 
To  which  vertex  of  the  model  corresponds  a  given  vertex  of  its  flat  pattern? 
Observing the flat pattern of a cube, can we know the number of faces? Observing at 
the flat pattern of a solid, can we know the number of faces? How many cuts do we 
need to make to a model to obtain the flat pattern? Which sides of the flat pattern 
form an edge in the model?
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In order to work on the establishment of relations among the different representations 
the teacher compares the model properties maintained and the properties that “are 
broken” in each of them. For example, in a perspective representation of a cylinder, 
the property of bases being circles is “broken”, or in a perspective representation of 
the cube, the property of all edges being equal and all angles being equal is “broken”, 
property that does show on the corresponding flat patterns.

7. Numerical relations. These types of relationships are studied in several contexts. 
For example,  when finding the numerical  characteristics  of the prisms,  we obtain 
certain relations such as: the number of edges of a n-agonal prism is equal to 4 times 
the number of lateral faces plus 2 times the number of sides of the polygon of the 
base; for regular polyhedrons: the number of edges (sides of polygons of the faces) is 
equal to number of polygons of the sides of faces multiplied by the number of faces 
and divided into two.

CONCLUSIONS

In Gonzalez et. al. (2006; 2008) we already pointed out that solids constitute a very 
important  context  for  the  development  of  mathematical  activity  and  we  have 
presented  some  features  that  characterize  a  competent  conduct  to  teach  solid 
geometry  in  primary  school.  These  results  complement  those  deduced  from 
observations that we will refer to in the following paragraphs. To introduce the study 
of geometry in primary school, the competent conduct implies putting into practice 
the different  contents  recommended  in  a  training  plan for  teachers  related  to  the 
establishment of relationships among geometric contents:

-  The  use  of  different  contexts  with  all  the  possibilities  they  offer  for  the 
establishment  of  relations  among  geometric  contents  of  the  same  and  different 
dimension. 

-  The establishment  of relations among geometric  contents  of one,  tow and three 
dimensions.

-  To emphasize  about  the multitude  of  relations  among geometric  contents.   For 
example,  those  that  arise  when  considering  different  solids  families  and/or  their 
elements: i) cylinders and prisms, cones and pyramids; ii) some polyhedra families 
(prisms, pyramids); iii) solids families and flat figures, etc; iv) regular polyhedrons 
and  other  solids  families;  v)  relations  of  inscription  and  duality  among  regular 
polyhedrons. 

- To work on the transformation of some solid families  into others with different 
objectives, such as: i) focusing attention on seeing  them in a more dynamic way; ii) 
discovering  the  properties  maintained  and  lost  along  the  transformation;  iii) 
discovering new knowledge; iv) using knowledge that we already have in order to 
discover new; v) working on the same geometric content in different contexts and 
times.
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- To  present the contents regarding the subject knowledge for its teaching without 
overlooking  the  contents  of  the  subject  itself.  For  example,  to  propose  different 
questions with the intention of generating mathematical activity, emphasizing on the 
relations expressed and paying attention to the type of language used for this purpose; 
the use of different materials,  diagrams and tables with the aim of facilitating the 
discovery and verbalization with a each time more specific geometric language of the 
relationships that arise.
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STUDENTS’ 3D GEOMETRY THINKING PROFILES

Marios Pittalis, Nicholas Mousoulides & Constantinos Christou

Department of Education, University of Cyprus 

This  article  focuses  on  the  construction,  description  and  testing  of  a  theoretical  
model  for  the  structure  of  3D  geometry  thinking.  We  tested  the  validity  and  
applicability of the model with 269 students (5th to 9th grade) in Cyprus. The results of  
the study showed that 3D geometry thinking can be described across the following 
factors: (a) recognition and construction of nets, (b) representation of 3D objects, (c)  
structuring  of  3D arrays  of  cubes,  (d)  recognition  of  3D shapes’  properties,  (e)  
calculation of the volume and the area of solids, and (f) comparison of the properties  
of 3D shapes. The analysis showed that four different profiles of students can be  
identified. 

INTRODUCTION

Geometry and three-dimensional (3D) thinking is connected to every strand in the 
mathematics curriculum and to a multitude of situations in real life (Jones & Mooney, 
2004,  Presmeg  2006).  The  reasons  for  including  3D  geometry  in  the  school 
mathematics  curriculum  are  myriad  and  encompass  providing  opportunities  for 
learners not only to develop spatial awareness, geometrical intuition and the ability to 
visualise, but also to develop knowledge and understanding of, and the ability to use, 
geometrical properties and theorems (Jones, 2002). However, it is widely accepted 
that the 3D geometry research domain has been neglected and efforts to establish an 
empirical  link  between spatial  ability  and 3D geometry  ability  have been few in 
number  and  generally  inconclusive  (Presmeg,  2006).  Moreover,  3d  geometry 
teaching gets little attention in most mathematics curriculum and students are only 
engaged  in  plane  representations  of  solids  (Battista  1999;  Ben-Haim,  Lappan  & 
Houang,  1989).  Thus,  there  is  neither  a  well-accepted  theory  on  3D  geometry 
learning and teaching, nor a well-substantial knowledge on student’s 3D thinking.

The purpose of the present study is twofold. First, it examines the structure of 3D 
geometry  abilities  by  proposing  a  model  that  encompasses  most  of  the  previous 
research in 3D geometry abilities and describes 3D geometry thinking across several 
dimensions. Second, the study may provide a worthwhile starting point for tracing 
students’ 3D geometry thinking profiles based on empirical data with the purpose of 
improving instructional practices. 

THEORETICAL CONSIDERATIONS

3D Geometry Abilities

For a long time studies on 3D geometry have concentrated mainly on the abilities of 
students to processes and tasks directly related to school curriculum (NCTM, 2000; 
Lawrie, Pegg, & Gutierrez, 2000). Following, we describe the main research findings 
on these 3D geometry abilities.
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(a) The ability to represent 3D objects: Plane representations are the most frequent 
type  of  representation  modes  used  to  represent  3D geometrical  objects  in  school 
textbooks.  However,  students  have  great  difficulties  in  conceptualizing  them 
(Gutierrez, 1992; Ben-Chaim, Lappan, & Houang, 1989). Specifically, students and 
adults  have great  difficulties  in  drawing 3D objects  and representing parallel  and 
perpendicular lines in space. Parzysz (1988) pointed out that the representation of a 
3D object by means of a 2D figure demands considerable conventionalizing which is 
not trivial and not learned in school. He concluded that there is a need to explicitly 
interpret  and  utilize  drawing  3D  objects  conventions,  otherwise,  students  may 
misread a drawing and do not understand whether it represents a 2D or a 3D object. 
(b) The ability to recognise and construct nets: Net construction requires students’ 
ability to make translations between 3D objects and 2D nets by focusing and studying 
the  component  parts  of  the  objects  in  both  representation  modes.  Cohen  (2003) 
supported that the visualization of nets involves mental processes that students do not 
have, but they can develop through appropriate instruction. The transition from the 
perception of a 3D object to the perception of its net, requires the activation of an 
appropriate mental act that coordinates the different perspectives of the object. (c) 
The ability to structure 3D arrays of cubes: Tasks related to enumeration of cubes 
in  3D arrays  appear  in  many  school  textbooks.  For  example,  images  of  cuboids 
composed by unit-sized cubes are used to introduce students to the concept of volume 
(Ben-Chaim et al., 1989). The development of this ability is not a simple procedure 
and as a result primary and middle school students fail in these tasks (Battista 1999; 
Ben-Chaim  et  al.,  1989).  Battista  (1999)  support  that  students’  difficulties  to 
enumerate the cubes that fit  in a box can by explained by the lack of the spatial 
structuring ability and the inability of students to coordinate and integrate to a unified 
mental model the different views of the structure.  (d) The ability to recognise 3D 
shapes’ properties and compare 3D shapes: Understanding the properties of a solid 
equals  to  understanding  how  the  elements  of  the  solid  are  interrelated.  This 
understanding may refer to the same object or between objects. The properties of the 
composing parts, the comparative relations between the same composing parts and 
the relations between different composing parts compose altogether the properties of 
a  3D object  that  students  should  conceptualize.  Although the composing parts  of 
polyhedrons  are  almost  the  same,  the  special  characteristics  of  these  parts  vary 
between  the  different  types  of  polyhedrons  (Gutierrez,  1992).  (e)  The  ability  to 
calculate  the  volume  and  the  area  of  solids: 3D  geometry  ability  is  closely 
connected to students’  ability  to  calculate the volume and surface area of  a solid 
(Owens & Outhred, 2006). Research findings showed that students focus only on the 
formulas and the numerical operations required to calculate the volume or surface 
area of a solid and completely ignore the structure of the unit measures (Owens & 
Outhred, 2006). Based on these findings, researchers affirmed that students should 
develop two necessary skills to calculate the volume and surface area of a solid: (i) 
the conceptualization of the numerical operations and the link of the formulas with 
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the structure of the solid, and (ii) the understanding and visualization of the internal 
structure of the solid. 

3D Geometry Levels of Thinking

In plane geometry systematic research efforts have described extensively progressive 
levels  of  thinking  and define  profiles  of  geometric  thinking  in  various  geometric 
situations. Most of these studies are grounded on Van Hiele’s model (Lawrie, Pegg, 
& Gutierrez, 2000). The van Hiele model of geometric thought outlines the hierarchy 
of levels through which students progress as they develop of geometric ideas. The 
model clarifies many of the shortcomings in traditional instruction and offers ways to 
improve it by focusing on getting students to the appropriate level to be successful in 
high school Geometry. Gutierrez (1992) extended Van Hiele’s model in 3D geometry 
by analyzing  students’  behaviour when solving activities of comparing or moving 
solids is the ground. Students of the first level compare solids on a global perception 
of the shapes of the solids or some particular elements (faces, edges, vertices) without 
paying  attention  to  properties  such  as  angle  sizes,  edge  lengths,  parallelism,  etc. 
When some one of these mathematical characteristics appears in their answers, it has 
just  a  visual  role.  Students  of the second level  compare solids  based on a global 
perception of the solids or their elements leading to the examination of differences in 
isolated mathematical  properties  (such as  angles  sizes,  parallelism,  etc.),  apparent 
from  the  observation  of  the  solids  or  known  from  the  solid’s  name.  Their 
explanations  are  based  on  observation.  Students  of  the  third  level  analyze 
mathematically  solids  and  their  elements.  Their  answers  include  informal 
justifications  based  on  isolated  mathematical  properties  of  the  solids.  These 
properties may be observed in the solids’ representations or known from their prior 
knowledge. Students of the fourth level analyse the solids prior to any manipulation 
and their  reasoning  is  based  on  the  mathematical  structure  of  the  solids  or  their 
elements,  including  properties  not  seen  but  formally  deduced from definitions  or 
other properties. 

THE PURPOSE OF THE STUDY AND THE PROPOSED MODEL  

The purpose of the present study is twofold: First, to examine the structure of 3D 
geometry  thinking  by  validating  a  theoretical  model  assuming  that  3D geometry 
thinking consists of the 3D geometry abilities described above. Second, to describe 
students’ 3D geometry thinking profiles by tracing a developmental trend between 
categories of students. To this end, latent profile analysis, a person-centered analytic 
strategy,  was  used  to  explore  students’  3D  geometry  abilities,  allowing  for  the 
subsequent description of those patterns in the context of dealing with different forms 
of  3D  geometry  situations.  In  this  paper,  as  it  is  highlighted  in  Figure  1,  we 
hypothesized that students’ thinking in 3D geometry can be described by six factors 
that correspond to six distinct 3D geometry abilities. Specifically, the hypothesized 
model consists of six first order factors which represent the following 3D geometry 
abilities: (a) Students’ ability to recognise and construct nets, i.e., to decide whether a 
net can be used to construct a solid when folded and to construct nets, (b) students’ 
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ability to represent 3D objects, i.e., to draw a 3D object, and to translate from one 
representational mode to another, (c) students’ ability to structure 3D arrays of cubes, 
i.e., to manipulate 3D arrays of objects, and to enumerate the cubes that fit in a shape, 
(d) students’ ability to recognise 3D shapes’ properties, i.e., to identify solids in the 
environment or in 2D sketches and to realize their structural elements and properties, 
(e) students’ ability to calculate the volume and the area of solids, i.e., to calculate the 
surface and perceptually estimate the volume of 3D objects without using formulas, 
and (f) students’ ability to compare the properties of 3D shapes.  

METHOD

Sample

The sample of this study consisted of 269 students from two primary schools and two 
middle schools in urban districts in Cyprus. More specifically, the sample consisted 
of 55 fifth grade students (11 years old), 61 sixth grade students (12 years old), 58 
seventh grade students (13 years old), 63 eighth grade students (14 years old) and 42 
ninth grade students (15 years old). 

Instrument

The 3D geometry thinking test consisted of 27 tasks measuring the six 3D geometry 
abilities: (a) Four tasks were developed to measure students’ ability to recognise and 
construct nets. Two tasks asked students to recognise the nets of specific solids while 
the other  two asked them to construct  or  complete the net of specific solids.  For 
example (see Table 1), students had to complete a net in such a manner to construct a 
triangular prism when folded. (b) Six tasks were developed to capture the nature of 
the factor “students’ ability to represent 3D objects”, based on the research conducted 
by Parzysz (1988) and Ben-Chaim, Lappan, and Houang (1989). Two tasks required 
students to translate the sketch of a solid from one representational mode to another. 
For example (see Table 1), students were asked to draw the front, top and side view 
of an object based on its side projection. (c) Four tasks were used to measure the 
factor “students’ ability to structure 3D arrays of cubes”. For example (see Table 1), 
students were asked to enumerate the cubes that could fit in open and close boxes. (d) 
Five tasks were developed to measure the factor “students’ ability to recognise 3D 
shapes’ properties”. For example (see Table 1), students were asked to identify the 
solids that had minimum eight vertices. The second task asked students to identify the 
solids that were not cuboids out of twelve objects drawn in a solid form. The other 
three  tasks  asked  students  to  enumerate  the  vertices,  edges  and  faces  of  three 
pyramids drawn in transparent view. (e) Four tasks were used as measures of the 
factor “students’ ability to calculate the volume and the area of solids”. For example, 
students were asked to calculate how much wrapping paper is needed to wrap up a 
cuboid built up by unit-sized cubes. Students should have visualized the object and 
split its surface area into parts. Two other tasks asked students to calculate the surface 
area  and the  volume of  cuboids  that  were  presented  in  a  net  form (proposed  by 
Battista,  1999).  (f)  Three  tasks  were  developed  to  measure  the  factor  “students’ 

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 819



ability to compare the properties of 3D shapes”. For example, students were asked to 
decide whether statements referring to properties of solids were right or wrong (see 
Table 1). The other two tasks asked students to explore the Euler’s rule and extend it 
to the case of prisms.

Table 1: Examples of the 3D geometry thinking tasks. 

The ability to recognise and construct nets The ability to represent 3D objects

Complete  the  following  net  in  a  proper 
manner to construct the triangular prism (at 
the right) when folded. 

Draw  the  front,  side  and  top  view  of  the 
object.

The ability to structure 3D arrays of cubes The ability to recognise 3D shapes’ properties

How many  unit-sized  cubes  can  fit  in  the 
box?

Circle the solids that have at least 8 vertices.

The ability to calculate the volume and the area 
of solids

The ability to compare properties of 3D shapes

Find the area of the box. Which  of  the  following  statements  are 
wrong? 
-The cuboid is not a square prism.
-The  prisms’  and  cuboids’  faces  are 
rectangles.
-The  base  of  the  a prism,  a  cuboid  and a  
pyramid could be a rectangle

Data Analysis

The structural equation modelling software, MPLUS, was used (Muthen & Muthen, 
2007) and three fit indices were computed: The chi-square to its degrees of freedom 
ratio  (x2/df),  the  comparative  fit  index  (CFI),  and  the  root  mean-square  error  of 
approximation (RMSEA). The observed values for  χ2/df should be less than 2, the 
values for CFI should be higher than .9, and the RMSEA values should be lower than 
.08 to support model fit (Marcoulides & Schumacker, 1996).
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RESULTS

In this section, we refer to the main issues of the study. First, we present the results of 
the analysis,  establishing the validity  of the latent  factors and the viability  of the 
structure of the hypothesized latent factors. Second, we present the exploration of the 
data  for  meaningful  categories  with  respect  to  3D  geometry  abilities,  and  then 
working up from those categories, we present the characteristics of each 3D geometry 
thinking profile. 

The structure of 3D geometry thinking

In this study, we posited an a-priori (proposed) structure of 3D geometry thinking and 
tested the ability of a solution based on this structure to fit the data. The proposed 
model for 3D geometrical thinking consists of six first-order factors. The six first-
order  factors  represent  the dimensions  of  3D geometry  thinking described above: 
students’ ability to recognise and construct nets (F1), students’ ability to represent 3D 
objects (F2), students’ ability to structure 3D arrays of cubes (F3), students’ ability to 
recognise 3D shapes’ properties (F4), students’ ability to calculate the volume and the 
area of solids (F5), and students’ ability to compare the properties of 3D shapes (F6). 
The six factors were hypothesized to correlate between them (see Figure 1).  Figure 1 
makes easy the conceptualisation of how the various components of 3D geometry 
thinking relate to each other.

The descriptive-fit measures indicated support for the hypothesized first order latent 
factors  (CFI=.95,  χ  2  =375.88,  df=301,  χ  2  /  df  =1.25,  p<0.05,  RMSEA=.03).  The 
parameter  estimates  were  reasonable  in  that  all  factor  loadings  were  statistically 
significant  and  most  of  them  were  rather  large  (see  Figure  1).  Specifically,  the 
analysis  showed  that  each  of  the  tasks  employed  in  the  present  study  loaded 
adequately only on one of the six 3D geometry abilities (see the first order factors in 
Figure  1),  indicating  that  the  six  factors  can  represent  six  distinct  functions  of 
students’  thinking  in  3D  geometry.  The  results  of  the  study  showed  that  the 
correlations between the six factors are statistically significant and high (see Table 3). 
The correlation coefficients between F1 with F2 (r=.94,  p<.05), F1 with F3 (r=.96, 
p<.05), F2 with F4 (r=.92, p<.05), F3 with F5 (r=.97, p<.05) and F4 with F6 (r=.92, 
p<.05) were greater than .90.

Students’ 3D Geometry Thinking Profiles

To trace students’ different profiles of 3D geometry thinking we examined whether 
there  are  different  types  of  students  in  our  sample  who  could  reflect  the  six  3D 
geometry  abilities.  Mixture  growth  modeling  was  used  to  answer  this  question 
(Muthen & Muthen, 2007), because it enables specification of models in which one 
model applies to one subset of the data, and another model applies to another set. The 
modeling  here  used  a  stepwise  method-that  is,  the  model  was  tested  under  the 
assumption that there are two, three, and four categories of subjects. The best fitting 
model with the smallest AIC and BIC indices (see Muthen & Muthen, 2007) was the 
one  involving  four  categories.  Taking  into  consideration  the  average  class 
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T. 1

T. 2

T. 3

T. 4

T. 5

T. 6

T. 7

T. 8

T. 9

T. 10

T. 11

T. 12

T. 13

T. 14

T. 15

T. 16

T. 17

T. 18

T. 19

T. 20

Factor  1

Factor 2

Factor 4

Factor 3

Factor 5

0.53

0.54

0.53

0.48

0.43

0.57

0.54

0.52

0.31

0.49

0.36

0.40

0.48

0.62

0.61 

0.53

0.34

0.66 

0.72

0.38

0.40

0.22

0.25

0.41

0.76

Factor 6

T. 21

T. 22

T. 23

T. 24

T. 25

T. 26

T. 27 0.72

0.47

0.94 0.96

    0.86 

   0 .77

0 .89 

   0 .92

   0 .68 

   0 .62 

    0.77

0.88

 0.83 

0.92

probabilities  (not  presented due to space limitations),  we may conclude that  each 
category has its own characteristics. The means and standard deviations of each of the 
six 3D geometry abilities across the four categories of students are shown in Table 2, 
indicating that students in Category 4 outperformed students in Category 3, 2 and 
Category 1 in all 3D geometry ability factors, students in Category 3 outperformed 
their counterparts in Categories 2 and 1, while students in Category 2 outperformed 
their counterparts in Category 1.

Figure 1: The structure of 3D geometry thinking. 
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From Table 3, which shows the problems solved by more than 50% or 67% of the 
students in each category, it can be deduced that there is a developmental trend in 
students’ abilities to complete the assigned tasks of the six factors because success on 
any problem by more than 67% of the students in a category was associated with such 
success by more than 67% of the students in all subsequent categories.

Table 2: Means and Standard Deviations of the Four Categories of Students

Category Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

Categ. 1
Categ. 2
Categ. 3
Categ. 4

Mea
n
0.28
0.54
0.76
0.88

S.D.
0.16
0.21
0.20
0.14

Mea
n
0.30
0.51
0.71
0.86

S.D.
0.1
8
0.1
7
0.1
7
0.1
3

Μea
n
0.15
0.29
0.55
0.83

S.D.
0.1
3
0.2
0
0.2
2
0.1
9

Μea
n
0.51
0.71
0.83
0.92

S.D.
0.17
0.15
0.14
0.07

Μea
n
0.24
0.40
0.49
0.77

S.D.
0.18
0.21
0.23
0.22

Μea
n
0.10
0.28
0.50
0.78

S.D.
0.17
0.24
0.26
0.22

The  data  imply  that  there  are  four  profiles  of  students’  3D  geometry  thinking 
according to the characteristics of the four categories of students. The first profile of 
3D geometry thinking represents the students that recognize in a sufficient way 3D 
shapes but fail in the other 3D geometry tasks. The second profile of 3D geometry 
thinking represents the students that do not have any problems in recognizing 3D 
shapes  and  have  some  difficulties  in  recognizing  and  constructing  nets  and 
representing 3D shapes.  Students  that  belong to the third profile of  3D geometry 
thinking grasp easily recognizing and representing 3D shapes tasks and recognizing 
and constructing nets tasks. However, students of the third profile have difficulties in 
structuring  3D arrays  of  cubes  and comparing  3D shapes’  properties.  The  fourth 
profile represents the category of students that successfully solves tasks related to the 
recognition of 3D shapes’ properties, the comparison of 3D shapes’ properties, the 
recognition and construction of nets tasks, the structuring of 3D arrays of cubes, the 
representation of 3D shapes and the calculation of volume and area of solids.

Table 3: Problems Solved by More than 50% or 67% of Students in Each Category

F1 tasks F2 tasks F3 tasks F4 tasks F5 tasks F6 tasks

Category 1 

Category 2   √

Category 3 √ √  √ 

Category 4 √ √ √ √ √ √

: Problems solved by more than 50%, √: Problems solved by more than 67%
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DISCUSSION

The results of the study suggested that 3D geometry thinking can be described across 
six  dimensions  based  on  the  following  factors  which  represent  six  distinct  3D 
geometry abilities. The first factor is students’ ability to recognise and construct nets, 
by  deciding  whether  a  net  can be  used  to  construct  a  solid  when folded and by 
constructing nets. The second factor is students’ ability to represent 3D objects, such 
as drawing a 3D object, constructing a 3D object based on its orthogonal view, and 
translating from one representational mode to another. The third factor is students’ 
ability to structure 3D arrays of cubes by manipulating 3D arrays of objects,  and 
enumerating the cubes that fit in a shape by spatially structuring the shape. The fourth 
factor is students’ ability to recognise 3D shapes’ properties, by identifying solids in 
the  environment  or  in  2D  sketches  and  realizing  their  structural  elements  and 
properties. The fifth factor is students’ ability to calculate the volume and the area of 
solids. The sixth factor is students’ ability to compare the properties of 3D shapes, by 
comparing  the  number  of  vertices,  faces  and  edges,  and  comparing  3D  shapes’ 
properties.  The  structure  of  3D geometry  thinking  suggests  that  students  need to 
develop their own 3D geometry skills that integrate the six 3D geometry parameters 
described above. Based on this assumption, we could also speculate that the most 
common definition  of 3D geometry  by  other  researchers  (Gutierrez,  1992)  as  the 
knowledge and classification of the various types of solids, in particular polyhedrons, 
is  not  sufficient.  3D  geometry  thinking  implies  a  large  variety  of  3D  geometry 
situations which do not correspond necessarily to certain school geometry tasks. The 
results  of  the  study  revealed  that  the  six  factors  are  strongly  interrelated.  The 
correlation coefficients between the first factor and the second factor, the first factor 
and the third factor and the third factor and the fifth factor were the stronger ones. 
This result could be explained by the fact that these factors are strongly related with 
spatial ability skills. 

The second aim concerned the extent to which students in the sample vary according 
to the tasks provided in the test. The analysis illustrated that four different categories 
of students can be identified representing four distinct profiles of students.  Students 
of  the  first  profile  were  able  to  respond  only  to  the  recognition  of  solids  tasks. 
Students of the second profile were able to recognize and construct nets and represent 
3D  shapes  in  a  sufficient  way.  Students  of  the  third  profile  did  not  have  any 
difficulties in the recognition and construction of nets and the representation of 3D 
shapes  and  furthermore  they  were  able  in  structuring  3D  arrays  of  cubes  and 
calculating the volume and area of solids in a sufficient way. Students of the fourth 
profile were able in all the examined tasks. 

The identification of students’ 3D geometry thinking profiles extended the literature 
in a way that  these four categories  of students  may represent  four  developmental 
levels  of  thinking in  3D geometry,  leading to  the conclusion  that  there are  some 
crucial  factors  that  determine  the  profile  of  each  student  such  as  the  ability  to 
represent  3D objects  and  the  ability  to  structure  3D arrays  of  cubes.  These  two 
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abilities  are  closely  related  to  spatial  visualization  skills  (Battista,  1991;  Parzysz, 
1988).  This  assumption promulgates  the call  to study in depth the relation of 3D 
geometry thinking with spatial ability by using a structured quantitative setting.
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