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This  article  focuses  on  the  construction,  description  and  testing  of  a  theoretical  
model  for  the  structure  of  3D  geometry  thinking.  We  tested  the  validity  and  
applicability of the model with 269 students (5th to 9th grade) in Cyprus. The results of  
the study showed that 3D geometry thinking can be described across the following 
factors: (a) recognition and construction of nets, (b) representation of 3D objects, (c)  
structuring  of  3D arrays  of  cubes,  (d)  recognition  of  3D shapes’  properties,  (e)  
calculation of the volume and the area of solids, and (f) comparison of the properties  
of 3D shapes. The analysis showed that four different profiles of students can be  
identified. 

INTRODUCTION

Geometry and three-dimensional (3D) thinking is connected to every strand in the 
mathematics curriculum and to a multitude of situations in real life (Jones & Mooney, 
2004,  Presmeg  2006).  The  reasons  for  including  3D  geometry  in  the  school 
mathematics  curriculum  are  myriad  and  encompass  providing  opportunities  for 
learners not only to develop spatial awareness, geometrical intuition and the ability to 
visualise, but also to develop knowledge and understanding of, and the ability to use, 
geometrical properties and theorems (Jones, 2002). However, it is widely accepted 
that the 3D geometry research domain has been neglected and efforts to establish an 
empirical  link  between spatial  ability  and 3D geometry  ability  have been few in 
number  and  generally  inconclusive  (Presmeg,  2006).  Moreover,  3d  geometry 
teaching gets little attention in most mathematics curriculum and students are only 
engaged  in  plane  representations  of  solids  (Battista  1999;  Ben-Haim,  Lappan  & 
Houang,  1989).  Thus,  there  is  neither  a  well-accepted  theory  on  3D  geometry 
learning and teaching, nor a well-substantial knowledge on student’s 3D thinking.

The purpose of the present study is twofold. First, it examines the structure of 3D 
geometry  abilities  by  proposing  a  model  that  encompasses  most  of  the  previous 
research in 3D geometry abilities and describes 3D geometry thinking across several 
dimensions. Second, the study may provide a worthwhile starting point for tracing 
students’ 3D geometry thinking profiles based on empirical data with the purpose of 
improving instructional practices. 

THEORETICAL CONSIDERATIONS

3D Geometry Abilities

For a long time studies on 3D geometry have concentrated mainly on the abilities of 
students to processes and tasks directly related to school curriculum (NCTM, 2000; 
Lawrie, Pegg, & Gutierrez, 2000). Following, we describe the main research findings 
on these 3D geometry abilities.
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(a) The ability to represent 3D objects: Plane representations are the most frequent 
type  of  representation  modes  used  to  represent  3D geometrical  objects  in  school 
textbooks.  However,  students  have  great  difficulties  in  conceptualizing  them 
(Gutierrez, 1992; Ben-Chaim, Lappan, & Houang, 1989). Specifically, students and 
adults  have great  difficulties  in  drawing 3D objects  and representing parallel  and 
perpendicular lines in space. Parzysz (1988) pointed out that the representation of a 
3D object by means of a 2D figure demands considerable conventionalizing which is 
not trivial and not learned in school. He concluded that there is a need to explicitly 
interpret  and  utilize  drawing  3D  objects  conventions,  otherwise,  students  may 
misread a drawing and do not understand whether it represents a 2D or a 3D object. 
(b) The ability to recognise and construct nets: Net construction requires students’ 
ability to make translations between 3D objects and 2D nets by focusing and studying 
the  component  parts  of  the  objects  in  both  representation  modes.  Cohen  (2003) 
supported that the visualization of nets involves mental processes that students do not 
have, but they can develop through appropriate instruction. The transition from the 
perception of a 3D object to the perception of its net, requires the activation of an 
appropriate mental act that coordinates the different perspectives of the object. (c) 
The ability to structure 3D arrays of cubes: Tasks related to enumeration of cubes 
in  3D arrays  appear  in  many  school  textbooks.  For  example,  images  of  cuboids 
composed by unit-sized cubes are used to introduce students to the concept of volume 
(Ben-Chaim et al., 1989). The development of this ability is not a simple procedure 
and as a result primary and middle school students fail in these tasks (Battista 1999; 
Ben-Chaim  et  al.,  1989).  Battista  (1999)  support  that  students’  difficulties  to 
enumerate the cubes that fit  in a box can by explained by the lack of the spatial 
structuring ability and the inability of students to coordinate and integrate to a unified 
mental model the different views of the structure.  (d) The ability to recognise 3D 
shapes’ properties and compare 3D shapes: Understanding the properties of a solid 
equals  to  understanding  how  the  elements  of  the  solid  are  interrelated.  This 
understanding may refer to the same object or between objects. The properties of the 
composing parts, the comparative relations between the same composing parts and 
the relations between different composing parts compose altogether the properties of 
a  3D object  that  students  should  conceptualize.  Although the composing parts  of 
polyhedrons  are  almost  the  same,  the  special  characteristics  of  these  parts  vary 
between  the  different  types  of  polyhedrons  (Gutierrez,  1992).  (e)  The  ability  to 
calculate  the  volume  and  the  area  of  solids: 3D  geometry  ability  is  closely 
connected to students’  ability  to  calculate the volume and surface area of  a solid 
(Owens & Outhred, 2006). Research findings showed that students focus only on the 
formulas and the numerical operations required to calculate the volume or surface 
area of a solid and completely ignore the structure of the unit measures (Owens & 
Outhred, 2006). Based on these findings, researchers affirmed that students should 
develop two necessary skills to calculate the volume and surface area of a solid: (i) 
the conceptualization of the numerical operations and the link of the formulas with 

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 817



the structure of the solid, and (ii) the understanding and visualization of the internal 
structure of the solid. 

3D Geometry Levels of Thinking

In plane geometry systematic research efforts have described extensively progressive 
levels  of  thinking  and define  profiles  of  geometric  thinking  in  various  geometric 
situations. Most of these studies are grounded on Van Hiele’s model (Lawrie, Pegg, 
& Gutierrez, 2000). The van Hiele model of geometric thought outlines the hierarchy 
of levels through which students progress as they develop of geometric ideas. The 
model clarifies many of the shortcomings in traditional instruction and offers ways to 
improve it by focusing on getting students to the appropriate level to be successful in 
high school Geometry. Gutierrez (1992) extended Van Hiele’s model in 3D geometry 
by analyzing  students’  behaviour when solving activities of comparing or moving 
solids is the ground. Students of the first level compare solids on a global perception 
of the shapes of the solids or some particular elements (faces, edges, vertices) without 
paying  attention  to  properties  such  as  angle  sizes,  edge  lengths,  parallelism,  etc. 
When some one of these mathematical characteristics appears in their answers, it has 
just  a  visual  role.  Students  of the second level  compare solids  based on a global 
perception of the solids or their elements leading to the examination of differences in 
isolated mathematical  properties  (such as  angles  sizes,  parallelism,  etc.),  apparent 
from  the  observation  of  the  solids  or  known  from  the  solid’s  name.  Their 
explanations  are  based  on  observation.  Students  of  the  third  level  analyze 
mathematically  solids  and  their  elements.  Their  answers  include  informal 
justifications  based  on  isolated  mathematical  properties  of  the  solids.  These 
properties may be observed in the solids’ representations or known from their prior 
knowledge. Students of the fourth level analyse the solids prior to any manipulation 
and their  reasoning  is  based  on  the  mathematical  structure  of  the  solids  or  their 
elements,  including  properties  not  seen  but  formally  deduced from definitions  or 
other properties. 

THE PURPOSE OF THE STUDY AND THE PROPOSED MODEL  

The purpose of the present study is twofold: First, to examine the structure of 3D 
geometry  thinking  by  validating  a  theoretical  model  assuming  that  3D geometry 
thinking consists of the 3D geometry abilities described above. Second, to describe 
students’ 3D geometry thinking profiles by tracing a developmental trend between 
categories of students. To this end, latent profile analysis, a person-centered analytic 
strategy,  was  used  to  explore  students’  3D  geometry  abilities,  allowing  for  the 
subsequent description of those patterns in the context of dealing with different forms 
of  3D  geometry  situations.  In  this  paper,  as  it  is  highlighted  in  Figure  1,  we 
hypothesized that students’ thinking in 3D geometry can be described by six factors 
that correspond to six distinct 3D geometry abilities. Specifically, the hypothesized 
model consists of six first order factors which represent the following 3D geometry 
abilities: (a) Students’ ability to recognise and construct nets, i.e., to decide whether a 
net can be used to construct a solid when folded and to construct nets, (b) students’ 
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ability to represent 3D objects, i.e., to draw a 3D object, and to translate from one 
representational mode to another, (c) students’ ability to structure 3D arrays of cubes, 
i.e., to manipulate 3D arrays of objects, and to enumerate the cubes that fit in a shape, 
(d) students’ ability to recognise 3D shapes’ properties, i.e., to identify solids in the 
environment or in 2D sketches and to realize their structural elements and properties, 
(e) students’ ability to calculate the volume and the area of solids, i.e., to calculate the 
surface and perceptually estimate the volume of 3D objects without using formulas, 
and (f) students’ ability to compare the properties of 3D shapes.  

METHOD

Sample

The sample of this study consisted of 269 students from two primary schools and two 
middle schools in urban districts in Cyprus. More specifically, the sample consisted 
of 55 fifth grade students (11 years old), 61 sixth grade students (12 years old), 58 
seventh grade students (13 years old), 63 eighth grade students (14 years old) and 42 
ninth grade students (15 years old). 

Instrument

The 3D geometry thinking test consisted of 27 tasks measuring the six 3D geometry 
abilities: (a) Four tasks were developed to measure students’ ability to recognise and 
construct nets. Two tasks asked students to recognise the nets of specific solids while 
the other  two asked them to construct  or  complete the net of specific solids.  For 
example (see Table 1), students had to complete a net in such a manner to construct a 
triangular prism when folded. (b) Six tasks were developed to capture the nature of 
the factor “students’ ability to represent 3D objects”, based on the research conducted 
by Parzysz (1988) and Ben-Chaim, Lappan, and Houang (1989). Two tasks required 
students to translate the sketch of a solid from one representational mode to another. 
For example (see Table 1), students were asked to draw the front, top and side view 
of an object based on its side projection. (c) Four tasks were used to measure the 
factor “students’ ability to structure 3D arrays of cubes”. For example (see Table 1), 
students were asked to enumerate the cubes that could fit in open and close boxes. (d) 
Five tasks were developed to measure the factor “students’ ability to recognise 3D 
shapes’ properties”. For example (see Table 1), students were asked to identify the 
solids that had minimum eight vertices. The second task asked students to identify the 
solids that were not cuboids out of twelve objects drawn in a solid form. The other 
three  tasks  asked  students  to  enumerate  the  vertices,  edges  and  faces  of  three 
pyramids drawn in transparent view. (e) Four tasks were used as measures of the 
factor “students’ ability to calculate the volume and the area of solids”. For example, 
students were asked to calculate how much wrapping paper is needed to wrap up a 
cuboid built up by unit-sized cubes. Students should have visualized the object and 
split its surface area into parts. Two other tasks asked students to calculate the surface 
area  and the  volume of  cuboids  that  were  presented  in  a  net  form (proposed  by 
Battista,  1999).  (f)  Three  tasks  were  developed  to  measure  the  factor  “students’ 
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ability to compare the properties of 3D shapes”. For example, students were asked to 
decide whether statements referring to properties of solids were right or wrong (see 
Table 1). The other two tasks asked students to explore the Euler’s rule and extend it 
to the case of prisms.

Table 1: Examples of the 3D geometry thinking tasks. 

The ability to recognise and construct nets The ability to represent 3D objects

Complete  the  following  net  in  a  proper 
manner to construct the triangular prism (at 
the right) when folded. 

Draw  the  front,  side  and  top  view  of  the 
object.

The ability to structure 3D arrays of cubes The ability to recognise 3D shapes’ properties

How many  unit-sized  cubes  can  fit  in  the 
box?

Circle the solids that have at least 8 vertices.

The ability to calculate the volume and the area 
of solids

The ability to compare properties of 3D shapes

Find the area of the box. Which  of  the  following  statements  are 
wrong? 
-The cuboid is not a square prism.
-The  prisms’  and  cuboids’  faces  are 
rectangles.
-The  base  of  the  a prism,  a  cuboid  and a  
pyramid could be a rectangle

Data Analysis

The structural equation modelling software, MPLUS, was used (Muthen & Muthen, 
2007) and three fit indices were computed: The chi-square to its degrees of freedom 
ratio  (x2/df),  the  comparative  fit  index  (CFI),  and  the  root  mean-square  error  of 
approximation (RMSEA). The observed values for  χ2/df should be less than 2, the 
values for CFI should be higher than .9, and the RMSEA values should be lower than 
.08 to support model fit (Marcoulides & Schumacker, 1996).
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RESULTS

In this section, we refer to the main issues of the study. First, we present the results of 
the analysis,  establishing the validity  of the latent  factors and the viability  of the 
structure of the hypothesized latent factors. Second, we present the exploration of the 
data  for  meaningful  categories  with  respect  to  3D  geometry  abilities,  and  then 
working up from those categories, we present the characteristics of each 3D geometry 
thinking profile. 

The structure of 3D geometry thinking

In this study, we posited an a-priori (proposed) structure of 3D geometry thinking and 
tested the ability of a solution based on this structure to fit the data. The proposed 
model for 3D geometrical thinking consists of six first-order factors. The six first-
order  factors  represent  the dimensions  of  3D geometry  thinking described above: 
students’ ability to recognise and construct nets (F1), students’ ability to represent 3D 
objects (F2), students’ ability to structure 3D arrays of cubes (F3), students’ ability to 
recognise 3D shapes’ properties (F4), students’ ability to calculate the volume and the 
area of solids (F5), and students’ ability to compare the properties of 3D shapes (F6). 
The six factors were hypothesized to correlate between them (see Figure 1).  Figure 1 
makes easy the conceptualisation of how the various components of 3D geometry 
thinking relate to each other.

The descriptive-fit measures indicated support for the hypothesized first order latent 
factors  (CFI=.95,  χ  2  =375.88,  df=301,  χ  2  /  df  =1.25,  p<0.05,  RMSEA=.03).  The 
parameter  estimates  were  reasonable  in  that  all  factor  loadings  were  statistically 
significant  and  most  of  them  were  rather  large  (see  Figure  1).  Specifically,  the 
analysis  showed  that  each  of  the  tasks  employed  in  the  present  study  loaded 
adequately only on one of the six 3D geometry abilities (see the first order factors in 
Figure  1),  indicating  that  the  six  factors  can  represent  six  distinct  functions  of 
students’  thinking  in  3D  geometry.  The  results  of  the  study  showed  that  the 
correlations between the six factors are statistically significant and high (see Table 3). 
The correlation coefficients between F1 with F2 (r=.94,  p<.05), F1 with F3 (r=.96, 
p<.05), F2 with F4 (r=.92, p<.05), F3 with F5 (r=.97, p<.05) and F4 with F6 (r=.92, 
p<.05) were greater than .90.

Students’ 3D Geometry Thinking Profiles

To trace students’ different profiles of 3D geometry thinking we examined whether 
there  are  different  types  of  students  in  our  sample  who  could  reflect  the  six  3D 
geometry  abilities.  Mixture  growth  modeling  was  used  to  answer  this  question 
(Muthen & Muthen, 2007), because it enables specification of models in which one 
model applies to one subset of the data, and another model applies to another set. The 
modeling  here  used  a  stepwise  method-that  is,  the  model  was  tested  under  the 
assumption that there are two, three, and four categories of subjects. The best fitting 
model with the smallest AIC and BIC indices (see Muthen & Muthen, 2007) was the 
one  involving  four  categories.  Taking  into  consideration  the  average  class 

WORKING GROUP 5

Proceedings of CERME 6, January 28th-February 1st 2009, Lyon France © INRP 2010   <www.inrp.fr/editions/cerme6> 821



T. 1

T. 2

T. 3

T. 4

T. 5

T. 6

T. 7

T. 8

T. 9

T. 10

T. 11

T. 12

T. 13

T. 14

T. 15

T. 16

T. 17

T. 18

T. 19

T. 20

Factor  1

Factor 2

Factor 4

Factor 3

Factor 5

0.53

0.54

0.53

0.48

0.43

0.57

0.54

0.52

0.31

0.49

0.36

0.40

0.48

0.62

0.61 

0.53

0.34

0.66 

0.72

0.38

0.40

0.22

0.25

0.41

0.76

Factor 6

T. 21

T. 22

T. 23

T. 24

T. 25

T. 26

T. 27 0.72

0.47

0.94 0.96

    0.86 

   0 .77

0 .89 

   0 .92

   0 .68 

   0 .62 

    0.77

0.88

 0.83 

0.92

probabilities  (not  presented due to space limitations),  we may conclude that  each 
category has its own characteristics. The means and standard deviations of each of the 
six 3D geometry abilities across the four categories of students are shown in Table 2, 
indicating that students in Category 4 outperformed students in Category 3, 2 and 
Category 1 in all 3D geometry ability factors, students in Category 3 outperformed 
their counterparts in Categories 2 and 1, while students in Category 2 outperformed 
their counterparts in Category 1.

Figure 1: The structure of 3D geometry thinking. 
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From Table 3, which shows the problems solved by more than 50% or 67% of the 
students in each category, it can be deduced that there is a developmental trend in 
students’ abilities to complete the assigned tasks of the six factors because success on 
any problem by more than 67% of the students in a category was associated with such 
success by more than 67% of the students in all subsequent categories.

Table 2: Means and Standard Deviations of the Four Categories of Students

Category Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

Categ. 1
Categ. 2
Categ. 3
Categ. 4

Mea
n
0.28
0.54
0.76
0.88

S.D.
0.16
0.21
0.20
0.14

Mea
n
0.30
0.51
0.71
0.86

S.D.
0.1
8
0.1
7
0.1
7
0.1
3

Μea
n
0.15
0.29
0.55
0.83

S.D.
0.1
3
0.2
0
0.2
2
0.1
9

Μea
n
0.51
0.71
0.83
0.92

S.D.
0.17
0.15
0.14
0.07

Μea
n
0.24
0.40
0.49
0.77

S.D.
0.18
0.21
0.23
0.22

Μea
n
0.10
0.28
0.50
0.78

S.D.
0.17
0.24
0.26
0.22

The  data  imply  that  there  are  four  profiles  of  students’  3D  geometry  thinking 
according to the characteristics of the four categories of students. The first profile of 
3D geometry thinking represents the students that recognize in a sufficient way 3D 
shapes but fail in the other 3D geometry tasks. The second profile of 3D geometry 
thinking represents the students that do not have any problems in recognizing 3D 
shapes  and  have  some  difficulties  in  recognizing  and  constructing  nets  and 
representing 3D shapes.  Students  that  belong to the third profile of  3D geometry 
thinking grasp easily recognizing and representing 3D shapes tasks and recognizing 
and constructing nets tasks. However, students of the third profile have difficulties in 
structuring  3D arrays  of  cubes  and comparing  3D shapes’  properties.  The  fourth 
profile represents the category of students that successfully solves tasks related to the 
recognition of 3D shapes’ properties, the comparison of 3D shapes’ properties, the 
recognition and construction of nets tasks, the structuring of 3D arrays of cubes, the 
representation of 3D shapes and the calculation of volume and area of solids.

Table 3: Problems Solved by More than 50% or 67% of Students in Each Category

F1 tasks F2 tasks F3 tasks F4 tasks F5 tasks F6 tasks

Category 1 

Category 2   √

Category 3 √ √  √ 

Category 4 √ √ √ √ √ √

: Problems solved by more than 50%, √: Problems solved by more than 67%
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DISCUSSION

The results of the study suggested that 3D geometry thinking can be described across 
six  dimensions  based  on  the  following  factors  which  represent  six  distinct  3D 
geometry abilities. The first factor is students’ ability to recognise and construct nets, 
by  deciding  whether  a  net  can be  used  to  construct  a  solid  when folded and by 
constructing nets. The second factor is students’ ability to represent 3D objects, such 
as drawing a 3D object, constructing a 3D object based on its orthogonal view, and 
translating from one representational mode to another. The third factor is students’ 
ability to structure 3D arrays of cubes by manipulating 3D arrays of objects,  and 
enumerating the cubes that fit in a shape by spatially structuring the shape. The fourth 
factor is students’ ability to recognise 3D shapes’ properties, by identifying solids in 
the  environment  or  in  2D  sketches  and  realizing  their  structural  elements  and 
properties. The fifth factor is students’ ability to calculate the volume and the area of 
solids. The sixth factor is students’ ability to compare the properties of 3D shapes, by 
comparing  the  number  of  vertices,  faces  and  edges,  and  comparing  3D  shapes’ 
properties.  The  structure  of  3D geometry  thinking  suggests  that  students  need to 
develop their own 3D geometry skills that integrate the six 3D geometry parameters 
described above. Based on this assumption, we could also speculate that the most 
common definition  of 3D geometry  by  other  researchers  (Gutierrez,  1992)  as  the 
knowledge and classification of the various types of solids, in particular polyhedrons, 
is  not  sufficient.  3D  geometry  thinking  implies  a  large  variety  of  3D  geometry 
situations which do not correspond necessarily to certain school geometry tasks. The 
results  of  the  study  revealed  that  the  six  factors  are  strongly  interrelated.  The 
correlation coefficients between the first factor and the second factor, the first factor 
and the third factor and the third factor and the fifth factor were the stronger ones. 
This result could be explained by the fact that these factors are strongly related with 
spatial ability skills. 

The second aim concerned the extent to which students in the sample vary according 
to the tasks provided in the test. The analysis illustrated that four different categories 
of students can be identified representing four distinct profiles of students.  Students 
of  the  first  profile  were  able  to  respond  only  to  the  recognition  of  solids  tasks. 
Students of the second profile were able to recognize and construct nets and represent 
3D  shapes  in  a  sufficient  way.  Students  of  the  third  profile  did  not  have  any 
difficulties in the recognition and construction of nets and the representation of 3D 
shapes  and  furthermore  they  were  able  in  structuring  3D  arrays  of  cubes  and 
calculating the volume and area of solids in a sufficient way. Students of the fourth 
profile were able in all the examined tasks. 

The identification of students’ 3D geometry thinking profiles extended the literature 
in a way that  these four categories  of students  may represent  four  developmental 
levels  of  thinking in  3D geometry,  leading to  the conclusion  that  there are  some 
crucial  factors  that  determine  the  profile  of  each  student  such  as  the  ability  to 
represent  3D objects  and  the  ability  to  structure  3D arrays  of  cubes.  These  two 
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abilities  are  closely  related  to  spatial  visualization  skills  (Battista,  1991;  Parzysz, 
1988).  This  assumption promulgates  the call  to study in depth the relation of 3D 
geometry thinking with spatial ability by using a structured quantitative setting.
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